当前位置: 首页 > news >正文

莱芜 网站seo查询是什么

莱芜 网站,seo查询是什么,宝鸡企业网站建设,vip网站怎么做这段代码是一个完整的端到端的中文聊天机器人的实现,包括数据处理、模型训练、预测和图形用户界面(GUI),下面是对各个部分功能的详细说明: 1. 导入必要的库 import os os.environ[CUDA_LAUNCH_BLOCKING] = 1import torch import torch.nn as nn import torch.optim as o…

这段代码是一个完整的端到端的中文聊天机器人的实现,包括数据处理、模型训练、预测和图形用户界面(GUI),下面是对各个部分功能的详细说明:

1. 导入必要的库

import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import random
import tkinter as tk
import jieba
import matplotlib.pyplot as plt
import os
import json
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from torch.amp import GradScaler, autocast

os: 用于设置环境变量和文件操作。
torch: PyTorch 库,用于构建和训练深度学习模型。
tkinter: 用于创建图形用户界面。
jieba: 用于中文分词。
matplotlib: 用于绘制损失曲线。
json: 用于读取 JSON 文件。
transformers: Hugging Face 的 Transformers 库,用于加载预训练模型和分词器。
torch.amp: 用于混合精度训练,提高训练速度和减少内存占用。

2. 定义特殊标记和词汇表

PAD_TOKEN = "<PAD>"
UNK_TOKEN = "<UNK>"
SOS_TOKEN = "<SOS>"
EOS_TOKEN = "<EOS>"word2index = {PAD_TOKEN: 0, UNK_TOKEN: 1, SOS_TOKEN: 2, EOS_TOKEN: 3}
index2word = {0: PAD_TOKEN, 1: UNK_TOKEN, 2: SOS_TOKEN, 3: EOS_TOKEN}

特殊标记:定义了四个特殊标记,分别表示填充、未知词、句子开始和句子结束。
词汇表:初始化词汇表,将特殊标记映射到索引。

3. 中文分词

def tokenize_chinese(sentence):tokens = jieba.lcut(sentence)return tokens

功能:使用 jieba 对输入的中文句子进行分词,返回分词后的词汇列表。

4. 构建词汇表

def build_vocab(sentences):global word2index, index2wordvocab_size = len(word2index)for sentence in sentences:for token in tokenize_chinese(sentence):if token not in word2index:word2index[token] = vocab_sizeindex2word[vocab_size] = tokenvocab_size += 1return vocab_size

功能:遍历所有句子,构建词汇表,将每个词映射到一个唯一的索引。

5. 将句子转换为张量

def sentence_to_tensor(sentence, max_length=50):tokens = tokenize_chinese(sentence)indices = [word2index.get(token, word2index[UNK_TOKEN]) for token in tokens]indices = [word2index[SOS_TOKEN]] + indices + [word2index[EOS_TOKEN]]indices += [word2index[PAD_TOKEN]] * (max_length - len(indices))return torch.tensor(indices, dtype=torch.long), len(indices)

功能:将输入的句子转换为张量,并返回句子的实际长度。句子被加上 和 标记,并用 标记填充到指定的最大长度。

6. 读取数据

def load_data(file_path):if file_path.endswith('.jsonl'):with open(file_path, 'r', encoding='utf-8') as f:lines = [json.loads(line) for line in f.readlines()]elif file_path.endswith('.json'):with open(file_path, 'r', encoding='utf-8') as f:lines = json.load(f)else:raise ValueError("不支持的文件格式。请使用 .jsonl 或 .json。")questions = [line['question'] for line in lines]answers = [random.choice(line['human_answers'] + line['chatgpt_answers']) for line in lines]return questions, answers

功能:从指定的 JSON 或 JSONL 文件中读取数据,返回问题和答案列表。

7. 数据增强

def data_augmentation(sentence):tokens = tokenize_chinese(sentence)augmented_sentence = []if random.random() < 0.1:insert_token = random.choice(list(word2index.keys())[4:])insert_index = random.randint(0, len(tokens))tokens.insert(insert_index, insert_token)if random.random() < 0.1 and len(tokens) > 1:delete_index = random.randint(0, len(tokens) - 1)del tokens[delete_index]if len(tokens) > 1 and random.random() < 0.1:index1, index2 = random.sample(range(len(tokens)), 2)tokens[index1], tokens[index2] = tokens[index2], tokens[index1]augmented_sentence = ''.join(tokens)return augmented_sentence

功能:对输入的句子进行随机插入、删除和交换操作,以增加数据的多样性。

8. 定义数据集

class ChatDataset(Dataset):def __init__(self, questions, answers):self.questions = questionsself.answers = answersdef __len__(self):return len(self.questions)def __getitem__(self, idx):input_tensor, input_length = sentence_to_tensor(self.questions[idx])target_tensor, target_length = sentence_to_tensor(self.answers[idx])return input_tensor, target_tensor, input_length, target_length

功能:定义一个自定义的数据集类,用于存储问题和答案,并将它们转换为张量。

9. 自定义 collate 函数

def collate_fn(batch):inputs, targets, input_lengths, target_lengths = zip(*batch)inputs = nn.utils.rnn.pad_sequence(inputs, batch_first=True, padding_value=word2index[PAD_TOKEN])targets = nn.utils.rnn.pad_sequence(targets, batch_first=True, padding_value=word2index[PAD_TOKEN])return inputs, targets, torch.tensor(input_lengths), torch.tensor(target_lengths)

功能:将一批数据进行填充,使其具有相同的长度,并返回填充后的输入、目标、输入长度和目标长度。

10. 创建数据集和数据加载器

def create_dataset_and_dataloader(questions_file, answers_file, batch_size=10, shuffle=True, split_ratio=0.8):questions, answers = load_data(questions_file)vocab_size = build_vocab(questions + answers)dataset = ChatDataset(questions, answers)train_size = int(split_ratio * len(dataset))val_size = len(dataset) - train_sizetrain_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle, collate_fn=collate_fn)val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)return train_dataset, train_dataloader, val_dataset, val_dataloader, vocab_size

功能:创建训练和验证数据集及数据加载器,并返回词汇表的大小。

11. 定义模型结构

class Encoder(nn.Module):def __init__(self, input_size, hidden_size, num_layers=1):super(Encoder, self).__init__()self.embedding = nn.Embedding(input_size, hidden_size)self.gru = nn.GRU(hidden_size, hidden_size, num_layers, batch_first=True)def forward(self, input_seq, input_lengths, hidden=None):embedded = self.embedding(input_seq)packed = nn.utils.rnn.pack_padded_sequence(embedded, input_lengths, batch_first=True, enforce_sorted=False)outputs, hidden = self.gru(packed, hidden)outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True)return outputs, hiddenclass Decoder(nn.Module):def __init__(self, output_size, hidden_size, num_layers=1):super(Decoder, self).__init__()self.embedding = nn.Embedding(output_size, hidden_size)self.gru = nn.GRU(hidden_size, hidden_size, num_layers, batch_first=True)self.out = nn.Linear(hidden_size, output_size)self.softmax = nn.LogSoftmax(dim=1)def forward(self, input_step, hidden, encoder_outputs):embedded = self.embedding(input_step)gru_output, hidden = self.gru(embedded, hidden)output = self.softmax(self.out(gru_output.squeeze(1)))return output, hiddenclass Seq2Seq(nn.Module):def __init__(self, encoder, decoder, device, tokenizer):super(Seq2Seq, self).__init__()self.encoder = encoderself.decoder = decoderself.device = deviceself.tokenizer = tokenizerdef forward(self, input_tensor, target_tensor, input_lengths, target_lengths, teacher_forcing_ratio=0.5):batch_size = input_tensor.size(0)max_target_len = max(target_lengths)vocab_size = self.decoder.out.out_featuresoutputs = torch.zeros(batch_size, max_target_len, vocab_size).to(self.device)encoder_outputs, encoder_hidden = self.encoder(input_tensor, input_lengths)decoder_input = torch.tensor([[word2index[SOS_TOKEN]] * batch_size], device=self.device).transpose(0, 1)decoder_hidden = encoder_hiddenfor t in range(max_target_len<
http://www.ds6.com.cn/news/42763.html

相关文章:

  • win7云主机怎么做网站网站收录免费咨询
  • 镇网站建设管理工作总结网站制作哪家公司好
  • 福田做棋牌网站建设哪家好色盲悖论
  • wap html网站模板seo的工具有哪些
  • 温州建设网站制作营销必备十大软件
  • 智慧团建注册登录入口下载湖南专业关键词优化服务水平
  • 莱西做网站百度关键词优化培训
  • 深圳有什么做招聘网站的公司吗收录网站查询
  • 找外包网站 和自己做最吸引人的营销广告文案
  • 网站建设 淘宝客末班郑州网络营销学校
  • 公司网站建设行业怎么样自建站seo如何做
  • 做动态网站的步骤手机版百度一下
  • web网站开发的流程图推广赚钱app哪个靠谱
  • 华人国际婚恋网站建设方案网站设计的基本原则
  • 怎样使自己做的网站上线看片应该搜什么关键词哪些词
  • 北川建设局网站优化设计三年级上册语文答案
  • 网站如何做品牌营销关键词分析软件
  • 网站字体设计规范b站推广网站mmmnba
  • 快速搭建网站域名绑定设置谷歌独立站
  • 老网站做成适合手机端的网站怎么做百度刷排名优化软件
  • 合肥企业展厅设计公司搜索引擎优化策略应该包括
  • 网站开发百灵鸟企业网站建设方案策划
  • 初中生电脑作业做网站拉新奖励的app排行
  • 巴彦淖尔市 网站建设服务营销包括哪些内容
  • 网站开发需要准备什么材料昆明seo建站
  • 网站建设近义词seo的优化策略有哪些
  • 网站制作的差异化定位企业查询app
  • wordpress生成了太多图片seo包年优化平台
  • 优化免费网站建设国家最新新闻
  • 将网站的字体设计成百分比的形式要怎样定义域名注册信息查询