当前位置: 首页 > news >正文

怎么把危险网站移动网站如何优化排名

怎么把危险网站,移动网站如何优化排名,建设个读书网站大约需要投入多少钱,wordpress导航栏文字大小不一文章目录 一、准备1、安装 autoawq2、模型准备 二、量化config.json 文件变化 三、加载量化后模型量化后的输出原始输出对比 四、查看模型的精度1、查看模型卡2、查看 config.json 中的 torch_dtype3、打印模型信息4、model.dtype 未必是模型精度 一、准备 1、安装 autoawq p…

文章目录

    • 一、准备
      • 1、安装 autoawq
      • 2、模型准备
    • 二、量化
        • `config.json` 文件变化
    • 三、加载量化后模型
        • 量化后的输出
        • 原始输出
        • 对比
    • 四、查看模型的精度
      • 1、查看模型卡
      • 2、查看 config.json 中的 `torch_dtype`
      • 3、打印模型信息
      • 4、model.dtype 未必是模型精度


一、准备

1、安装 autoawq

pip install autoawq 
pip install transformers==4.47.1 

使用的较低版本的 transformers,如果执行下面代码有问题,可以检查 transformers 版本。

目前我的测试 Python 环境为 3.9


2、模型准备

这里以 mistralai/Mistral-7B-Instruct-v0.2 为例

如果下载有问题,可以前往模型界面查看是否需要申请权限:https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2


后面代码会自动下载模型,你也可以提前下载模型:

huggingface-cli download mistralai/Mistral-7B-Instruct-v0.2

如果网络受限,可以设置镜像地址到环境变量:

export HF_ENDPOINT='https://hf-mirror.com'

二、量化

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizermodel_path = 'mistralai/Mistral-7B-Instruct-v0.2'
quant_path = 'mistral-instruct-v0.2-awq'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)# 查看模型类型
model.dtype
# torch.float32 - 32-bit(FP32) # Quantize
model.quantize(tokenizer, quant_config=quant_config)# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)print(f'Model is quantized and saved at "{quant_path}"')


quant_config 也可以写成:

from transformers import AwqConfig, AutoConfig
quantization_config = AwqConfig(bits=quant_config["w_bit"],group_size=quant_config["q_group_size"],zero_point=quant_config["zero_point"],version=quant_config["version"].lower(),
).to_dict()model.model.config.quantization_config = quantization_config

config.json 文件变化

config.json 文件会变成下方的样子:

相比原来的文件,多出 quantization_config 内容,其中 "quant_method": "awq"

{"_name_or_path": "/home/wx/.cache/huggingface/hub/models--mistralai--Mistral-7B-Instruct-v0.2/snapshots/3ad372fc79158a2148299e3318516c786aeded6c","architectures": ["MistralForCausalLM"],"attention_dropout": 0.0,"bos_token_id": 1,"eos_token_id": 2,"head_dim": 128,"hidden_act": "silu","hidden_size": 4096,"initializer_range": 0.02,"intermediate_size": 14336,"max_position_embeddings": 32768,"model_type": "mistral","num_attention_heads": 32,"num_hidden_layers": 32,"num_key_value_heads": 8,"quantization_config": {"bits": 4,"group_size": 128,"modules_to_not_convert": null,"quant_method": "awq","version": "gemm","zero_point": true},"rms_norm_eps": 1e-05,"rope_theta": 1000000.0,"sliding_window": null,"tie_word_embeddings": false,"torch_dtype": "bfloat16","transformers_version": "4.47.1","use_cache": false,"vocab_size": 32000
}

原始 config.json

{"architectures": ["MistralForCausalLM"],"attention_dropout": 0.0,"bos_token_id": 1,"eos_token_id": 2,"hidden_act": "silu","hidden_size": 4096,"initializer_range": 0.02,"intermediate_size": 14336,"max_position_embeddings": 32768,"model_type": "mistral","num_attention_heads": 32,"num_hidden_layers": 32,"num_key_value_heads": 8,"rms_norm_eps": 1e-05,"rope_theta": 1000000.0,"sliding_window": null,"tie_word_embeddings": false,"torch_dtype": "bfloat16","transformers_version": "4.36.0","use_cache": true,"vocab_size": 32000
}

三、加载量化后模型


from transformers import AutoModelForCausalLM, AutoTokenizer
quant_dir = '/home/wx/mistral-instruct-v0.2-awq'  
model = AutoModelForCausalLM.from_pretrained(quant_dir, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(quant_dir, trust_remote_code=True)prompt = "Tell me about blackhole."
prompt_template=f'''{prompt}'''tokens = tokenizer(prompt_template, return_tensors="pt").input_ids.cuda()generated_ids = model.generate(tokens, do_sample=True,temperature=0.7,top_p=0.95,top_k=40,max_new_tokens=512)
decoded = tokenizer.decode(generated_ids[0])
print(decoded)

量化后的输出

GPU 占用:4550MiB

<s> Tell me about blackhole.A black hole is a region in space where the gravitational pull is so strong that nothing, not even light, can escape. It's called a "black" hole because it appears black due to the absence of light emanating from it.Black holes are formed when a massive star collapses in on itself after it has exhausted its nuclear fuel. The collapse causes the star to shrink down to an incredibly small size, creating an incredibly dense object. This object is so dense that its gravity warps space and time around it, forming an event horizon, which is the point of no return. Once anything crosses this event horizon, it's pulled into the black hole and cannot escape.Black holes come in different sizes, with the smallest being about the size of a star and the largest being billions of times larger than the sun. The largest black hole that has been discovered is located at the center of the galaxy, and it's estimated to be about 40 billion times the mass of the sun.Despite their intimidating name, black holes are not necessarily a threat to us. The closest known black hole to Earth is about 1,600 light-years away, which is far enough that we don't need to worry about being sucked in. However, they are fascinating objects that continue to captivate scientists and the general public alike.</s>

原始输出

mistralai/Mistral-7B-Instruct-v0.2 , GPU 占用:21988MiB

<s> Tell me about blackhole. I've heard that it is some sort of astronomical thing, but I don't really understand what it is or how it works.A black hole is an extremely dense object in space that has such strong gravitational pull that nothing, not even light, can escape from it once it gets too close. Black holes are formed when a massive star collapses in on itself after it has exhausted its nuclear fuel and can no longer produce the pressure needed to counteract the force of gravity.The boundary around a black hole from which nothing can escape is called the event horizon. This is not a physical boundary that you can see, but rather a theoretical construct based on the laws of physics. Once an object crosses the event horizon, it is considered to be inside the black hole itself.Black holes are not completely black, as they do emit some form of radiation, but they appear black because they absorb all the light that falls on them. This is due to the fact that the intense gravitational pull causes the surface of the black hole to be at a temperature so hot that it emits very little visible light.Black holes can vary in size, from small ones that are only a few times the mass of the sun, to supermassive black holes that can be millions or even billions of times the mass of the sun. The supermassive black holes are thought to be at the center of most, if not all, galaxies, including our own Milky Way.Despite their fearsome reputation, black holes are not a threat to us here on Earth, as they are typically located billions of light-years away. However, they are fascinating objects of study for astronomers and physicists, who continue to learn new things about them and their role in the universe.</s>

对比
原始4bit 量化后
占用磁盘大小14G3.9G
GPU 占用21988MiB4550MiB (4.8倍)

四、查看模型的精度

对于一个模型,我们想知道原始的精度是多少,可以用下面几种方式:

1、查看模型卡

如:https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
右边的 Safetensors 信息
在这里插入图片描述


2、查看 config.json 中的 torch_dtype

"torch_dtype": "bfloat16",


3、打印模型信息

from transformers import AutoTokenizermodel_path = 'mistralai/Mistral-7B-Instruct-v0.2'# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path)for name, param in model.named_parameters():print(f"{name}: {param.dtype}")break  # 只打印第一个权重的数据类型

4、model.dtype 未必是模型精度

上述模型,model.dtype 打印的结果为 torch.float32,表示模型当前是以 32-bit 浮点数(FP32)精度加载的。
config.json 中的 "torch_dtype": "bfloat16"表示模型设计时支持或推荐使用 bfloat16 精度,但实际加载时可能由于环境 或 代码设置 未启用 bfloat16。


2025-03-08(六)

http://www.ds6.com.cn/news/43967.html

相关文章:

  • 青岛建站费用青岛网络优化代理
  • 用dw制作影视网站怎样做网店运营具体做什么
  • 什么网站做风险投资淘宝关键词优化工具
  • 做课内教学网站临沂seo网站管理
  • 做网站界面设计注意什么买域名
  • 邮箱注册过的网站查询免费的h5制作网站模板
  • 如何做一份网站的数据分析优化20条措施
  • 怎么依赖网站开发app韶山百度seo
  • 网上服装商城网站建设方案策划app推广方案模板
  • 社区网站建设难点智慧软文网
  • 百度云建设网站曼联vs曼联直播
  • 网站例子免费网站建设
  • 网站建设网站优化泰安网站seo推广
  • 企业网站建设首页要写什么内容最近三天的国内新闻
  • 给网站添加代码百度小程序seo
  • wordpress wp-json链接肇庆seo按天计费
  • 电子商务网站建设期末试题08答案百度极简网址
  • _沈阳做网站网站维护需要学什么
  • 中国建筑业协会官方网站百度新闻
  • 零基础如何做电商搜索引擎优化的概念是什么
  • 简单的公司资料网站怎么做网络营销学什么
  • 网站克隆好后该怎么做泉州关键词快速排名
  • 游乐园网站建设网推广公司
  • 操作展示或网站展示seo短视频网页入口引流网站
  • wordpress的统计优化大师最新版下载
  • wordpress主题一键生成百度关键词优化怎么做
  • 网站源码大全免费企业网站建设原则是
  • 做网站嘉兴樱桃bt官网
  • 棉桃剥壳机做网站搜索引擎关键词怎么选
  • html动态网站怎么做搜索词和关键词