当前位置: 首页 > news >正文

新疆网站建设制作报价方案培训班该如何建站

新疆网站建设制作报价方案,培训班该如何建站,动漫设计与制作设计课程,吴江建设局网站打不开多项式模型: 记住一定用于离散的对象,不能是连续的 于高斯分布相反,多项式模型主要适用于离散特征的概率计算,切sklearn的多项式模型不接受输入负值 因为多项式不接受负值的输入,所以样本数据的特征为数值型数据&…

多项式模型:

记住一定用于离散的对象,不能是连续的
于高斯分布相反,多项式模型主要适用于离散特征的概率计算,切sklearn的多项式模型不接受输入负值
因为多项式不接受负值的输入,所以样本数据的特征为数值型数据,必须归一化处理保证数据里没有负数
其中需要用到贝叶斯概率公式:如下
当分子出现0时候,需要用到拉普拉斯平滑系数

贝叶斯概率公式,来自Wang’s Blog的原创

模型构建与训练:

需要用到的api是:from sklearn.naive_bayes import MultinomialNB
我们还需要对文章内容进行提取需要用到的api是:from sklearn.feature_extraction.text import TfidfVectorizer
英文的可以用这种方法进行分词中文的需要自己进行分词

实验如下:

导入贝叶斯多项式模型

from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import sklearn.datasets as datasets
data = datasets.fetch_20newsgroups(data_home='./datasets',subset='all')
feature = data['data']#初始未进行特征值化
target = data['target']
# 分别创建模型,数据统计的实例对象
nb = MultinomialNB()
tf = TfidfVectorizer()
tf_feature = tf.fit_transform(feature)# 进行了特征值化
# 进行数据集切分
x_train, x_test, y_train, y_test = train_test_split(tf_feature,target,test_size=0.1,random_state=2023)
# 将训练集放入模型中进行训练模型
nb.fit(x_train,y_train)
# 输出训练后的模型里放入测试集的准确率
print(nb.score(x_test,y_test))
print(target)
print(feature)

输出结果:
显示的没办法爬数据,我又换了一组数据

# 导入贝叶斯多项式模型
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import sklearn.datasets as datasets
# data = datasets.fetch_20newsgroups(data_home='./datasets', subset='all')
data = datasets.load_iris()
feature = data['data']#初始未进行特征值化
target = data['target']
# 分别创建模型,数据统计的实例对象
nb = MultinomialNB()
# tf = TfidfVectorizer()
# feature = tf.fit_transform(feature)# 进行了特征值化
# 进行数据集切分
x_train, x_test, y_train, y_test = train_test_split(feature,target,test_size=0.1,random_state=2023)
# 将训练集放入模型中进行训练模型
nb.fit(x_train,y_train)print(target)
print(feature)
# 输出训练后的模型里放入测试集的准确率
print(nb.score(x_test,y_test))

此时输出结果:

	[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2]
[[5.1 3.5 1.4 0.2][4.9 3.  1.4 0.2][4.7 3.2 1.3 0.2][4.6 3.1 1.5 0.2][5.  3.6 1.4 0.2][5.4 3.9 1.7 0.4][4.6 3.4 1.4 0.3][5.  3.4 1.5 0.2][4.4 2.9 1.4 0.2][4.9 3.1 1.5 0.1][5.4 3.7 1.5 0.2][4.8 3.4 1.6 0.2][4.8 3.  1.4 0.1][4.3 3.  1.1 0.1][5.8 4.  1.2 0.2][5.7 4.4 1.5 0.4][5.4 3.9 1.3 0.4][5.1 3.5 1.4 0.3][5.7 3.8 1.7 0.3][5.1 3.8 1.5 0.3][5.4 3.4 1.7 0.2][5.1 3.7 1.5 0.4][4.6 3.6 1.  0.2][5.1 3.3 1.7 0.5][4.8 3.4 1.9 0.2][5.  3.  1.6 0.2][5.  3.4 1.6 0.4][5.2 3.5 1.5 0.2][5.2 3.4 1.4 0.2][4.7 3.2 1.6 0.2][4.8 3.1 1.6 0.2][5.4 3.4 1.5 0.4][5.2 4.1 1.5 0.1][5.5 4.2 1.4 0.2][4.9 3.1 1.5 0.2][5.  3.2 1.2 0.2][5.5 3.5 1.3 0.2][4.9 3.6 1.4 0.1][4.4 3.  1.3 0.2][5.1 3.4 1.5 0.2][5.  3.5 1.3 0.3][4.5 2.3 1.3 0.3][4.4 3.2 1.3 0.2][5.  3.5 1.6 0.6][5.1 3.8 1.9 0.4][4.8 3.  1.4 0.3][5.1 3.8 1.6 0.2][4.6 3.2 1.4 0.2][5.3 3.7 1.5 0.2][5.  3.3 1.4 0.2][7.  3.2 4.7 1.4][6.4 3.2 4.5 1.5][6.9 3.1 4.9 1.5][5.5 2.3 4.  1.3][6.5 2.8 4.6 1.5][5.7 2.8 4.5 1.3][6.3 3.3 4.7 1.6][4.9 2.4 3.3 1. ][6.6 2.9 4.6 1.3][5.2 2.7 3.9 1.4][5.  2.  3.5 1. ][5.9 3.  4.2 1.5][6.  2.2 4.  1. ][6.1 2.9 4.7 1.4][5.6 2.9 3.6 1.3][6.7 3.1 4.4 1.4][5.6 3.  4.5 1.5][5.8 2.7 4.1 1. ][6.2 2.2 4.5 1.5][5.6 2.5 3.9 1.1][5.9 3.2 4.8 1.8][6.1 2.8 4.  1.3][6.3 2.5 4.9 1.5][6.1 2.8 4.7 1.2][6.4 2.9 4.3 1.3][6.6 3.  4.4 1.4][6.8 2.8 4.8 1.4][6.7 3.  5.  1.7][6.  2.9 4.5 1.5][5.7 2.6 3.5 1. ][5.5 2.4 3.8 1.1][5.5 2.4 3.7 1. ][5.8 2.7 3.9 1.2][6.  2.7 5.1 1.6][5.4 3.  4.5 1.5][6.  3.4 4.5 1.6][6.7 3.1 4.7 1.5][6.3 2.3 4.4 1.3][5.6 3.  4.1 1.3][5.5 2.5 4.  1.3][5.5 2.6 4.4 1.2][6.1 3.  4.6 1.4][5.8 2.6 4.  1.2][5.  2.3 3.3 1. ][5.6 2.7 4.2 1.3][5.7 3.  4.2 1.2][5.7 2.9 4.2 1.3][6.2 2.9 4.3 1.3][5.1 2.5 3.  1.1][5.7 2.8 4.1 1.3][6.3 3.3 6.  2.5][5.8 2.7 5.1 1.9][7.1 3.  5.9 2.1][6.3 2.9 5.6 1.8][6.5 3.  5.8 2.2][7.6 3.  6.6 2.1][4.9 2.5 4.5 1.7][7.3 2.9 6.3 1.8][6.7 2.5 5.8 1.8][7.2 3.6 6.1 2.5][6.5 3.2 5.1 2. ][6.4 2.7 5.3 1.9][6.8 3.  5.5 2.1][5.7 2.5 5.  2. ][5.8 2.8 5.1 2.4][6.4 3.2 5.3 2.3][6.5 3.  5.5 1.8][7.7 3.8 6.7 2.2][7.7 2.6 6.9 2.3][6.  2.2 5.  1.5][6.9 3.2 5.7 2.3][5.6 2.8 4.9 2. ][7.7 2.8 6.7 2. ][6.3 2.7 4.9 1.8][6.7 3.3 5.7 2.1][7.2 3.2 6.  1.8][6.2 2.8 4.8 1.8][6.1 3.  4.9 1.8][6.4 2.8 5.6 2.1][7.2 3.  5.8 1.6][7.4 2.8 6.1 1.9][7.9 3.8 6.4 2. ][6.4 2.8 5.6 2.2][6.3 2.8 5.1 1.5][6.1 2.6 5.6 1.4][7.7 3.  6.1 2.3][6.3 3.4 5.6 2.4][6.4 3.1 5.5 1.8][6.  3.  4.8 1.8][6.9 3.1 5.4 2.1][6.7 3.1 5.6 2.4][6.9 3.1 5.1 2.3][5.8 2.7 5.1 1.9][6.8 3.2 5.9 2.3][6.7 3.3 5.7 2.5][6.7 3.  5.2 2.3][6.3 2.5 5.  1.9][6.5 3.  5.2 2. ][6.2 3.4 5.4 2.3][5.9 3.  5.1 1.8]]
0.9333333333333333

输出的效果还挺不错

http://www.ds6.com.cn/news/110398.html

相关文章:

  • 免费微信小程序商城好搜网惠州seo
  • 网站如何做外链企业线上培训平台
  • 京东网站建设策划书微指数官网
  • 杭州网站建设公司联系方式郑州seo优化阿亮
  • 全国免费自学网站网络培训心得体会总结
  • 网上哪里可以注册公司seo排名优化的方法
  • 能用网站做微信小程序app推广赚钱
  • 郑州网站建设招商视频营销
  • 淘宝网站建设问题网站关键词排名优化
  • 初学网站建设百度关键词查询网站
  • wordpress配置域名贵州网站seo
  • b2c网站价格企业品牌推广
  • html软件哪个好用西安seo顾问培训
  • 深圳哪家建设网站公司好找小网站的关键词
  • wordpress制作404页面模板seo自动优化工具
  • 深圳做分销网站设计怎么样创建网站
  • 别人冒用我们公司做的网站怎么关掉网络推广有哪些
  • 网站建设添加展示栏找客户资源的软件免费的
  • 武汉可信网站建设网络公司苏州seo关键词优化推广
  • 合山市网站个人在线网站推广
  • 做药品网站有哪些百度指数可以查询到哪些内容
  • 太原做网站培训谷歌seo优化排名
  • 陕西公司网站建设新闻稿代写平台
  • 泰安网站建设最好58同城网站推广
  • 做网站敲代码的图片谷歌官网首页
  • 诈骗网站谁做seo网站排名优化快速排
  • 怎么做网站注册名密码外贸展示型网站建设公司
  • 维持一个素材网站要多少钱上海谷歌seo公司
  • 游戏软件开发属于什么专业辽源seo
  • 关于网站开发的期刊百度是国企还是央企