当前位置: 首页 > news >正文

干部网络培训平台苏州网站优化排名推广

干部网络培训平台,苏州网站优化排名推广,高明网站建设哪家好,宁波外贸公司电话名单文章目录 1. 混淆矩阵2. Precision(精准率)3. Recall(召回率)4. F1-score5. ROC曲线和AUC指标5.1 ROC 曲线5.2 绘制 ROC 曲线5.3 AUC 值6. API介绍6.1 **分类评估报告api**6.2 **AUC计算API**练习-电信客户流失预测1. 数据集介绍2. 处理流程3. 案例实现4. 小结1. 混淆矩阵 …

文章目录

    • 1. 混淆矩阵
    • 2. Precision(精准率)
    • 3. Recall(召回率)
    • 4. F1-score
    • 5. ROC曲线和AUC指标
      • 5.1 ROC 曲线
      • 5.2 绘制 ROC 曲线
      • 5.3 AUC 值
    • 6. API介绍
      • 6.1 **分类评估报告api**
      • 6.2 **AUC计算API**
  • 练习-电信客户流失预测
    • 1. 数据集介绍
    • 2. 处理流程
    • 3. 案例实现
    • 4. 小结

1. 混淆矩阵

在这里插入图片描述

混淆矩阵作用就是看一看在测试集样本集中:

  1. 真实值是 正例 的样本中,被分类为 正例 的样本数量有多少,这部分样本叫做真正例(TP,True Positive)
  2. 真实值是 正例 的样本中,被分类为 假例 的样本数量有多少,这部分样本叫做伪反例(FN,False Negative)
  3. 真实值是 假例 的样本中,被分类为 正例 的样本数量有多少,这部分样本叫做伪正例(FP,False Positive)
  4. 真实值是 假例 的样本中,被分类为 假例 的样本数量有多少,这部分样本叫做真反例(TN,True Negative)

True Positive :表示样本真实的类别
Positive :表示样本被预测为的类别

2. Precision(精准率)

精准率也叫做查准率,指的是对正例样本的预测准确率。即,真正例(预测对的正例)占预测结果中所有正例的比例。

在这里插入图片描述

3. Recall(召回率)

召回率也叫做查全率,指的是预测为真正例样本占所有真实正例样本的比重。即,真正例(预测对的正例)占真实结果中所有正例的比例。
在这里插入图片描述

例子:

样本集中有 6 个恶性肿瘤样本,4 个良性肿瘤样本,我们假设恶性肿瘤为正例,则:

模型 A: 预测对了 3 个恶性肿瘤样本,4 个良性肿瘤样本

  1. 真正例 TP 为:3
  2. 伪反例 FN 为:3
  3. 假正例 FP 为:0
  4. 真反例 TN:4
  5. 精准率:3/(3+0) = 100%
  6. 召回率:3/(3+3)=50%

4. F1-score

如果我们对模型的精度、召回率都有要求,希望知道模型在这两个评估方向的综合预测能力如何?则可以使用 F1-score 指标。

在这里插入图片描述

样本集中有 6 个恶性肿瘤样本,4 个良性肿瘤样本,我们假设恶性肿瘤为正例,则:

模型 A: 预测对了 3 个恶性肿瘤样本,4 个良性肿瘤样本

  1. 真正例 TP 为:3
  2. 伪反例 FN 为:3
  3. 假正例 FP 为:0
  4. 真反例 TN:4
  5. 精准率:3/(3+0) = 100%
  6. 召回率:3/(3+3)=50%
  7. F1-score:(2*3)/(2*3+3+0)=67%

模型 B: 预测对了 6 个恶性肿瘤样本,1个良性肿瘤样本

  1. 真正例 TP 为:6
  2. 伪反例 FN 为:0
  3. 假正例 FP 为:3
  4. 真反例 TN:1
  5. 精准率:6/(6+3) = 67%
  6. 召回率:6/(6+0)= 100%
  7. F1-score:(2*6)/(2*6+0+3)=80%

5. ROC曲线和AUC指标

5.1 ROC 曲线

ROC 曲线:我们分别考虑正负样本的情况:

  1. 正样本中被预测为正样本的概率,即:TPR (True Positive Rate)
  2. 负样本中被预测为正样本的概率,即:FPR (False Positive Rate)

在这里插入图片描述

ROC 曲线图像中,4 个特殊点的含义:

  1. (0, 0) 表示所有的正样本都预测为错误,所有的负样本都预测正确
  2. (1, 0) 表示所有的正样本都预测错误,所有的负样本都预测错误
  3. (1, 1) 表示所有的正样本都预测正确,所有的负样本都预测错误
  4. (0, 1) 表示所有的正样本都预测正确,所有的负样本都预测正确

5.2 绘制 ROC 曲线

假设:在网页某个位置有一个广告图片或者文字,该广告共被展示了 6 次,有 2 次被浏览者点击了。每次点击的概率如下:

样本是否被点击预测点击概率
110.9
310.8
200.7
400.6
500.5
600.4

绘制 ROC 曲线:

阈值:0.9

  1. 原本为正例的 1、3 号的样本中 3 号样本被分类错误,则 TPR = 1/2 = 0.5
  2. 原本为负例的 2、4、5、6 号样本没有一个被分为正例,则 FPR = 0

阈值:0.8

  1. 原本为正例的 1、3 号样本被分类正确,则 TPR = 2/2 = 1
  2. 原本为负例的 2、4、5、6 号样本没有一个被分为正例,则 FPR = 0

阈值:0.7

  1. 原本为正例的 1、3 号样本被分类正确,则 TPR = 2/2 = 1
  2. 原本为负类的 2、4、5、6 号样本中 2 号样本被分类错误,则 FPR = 1/4 = 0.25

阈值:0.6

http://www.ds6.com.cn/news/111079.html

相关文章:

  • dedecms网站乱码专业seo站长工具
  • 做网站都需要哪些技术2022黄页全国各行业
  • 山西做网站的企业百度推广代理公司
  • 公司网站做地图地址怎么发帖子做推广
  • 免费源码资源源码站go郑州seo顾问阿亮
  • 传媒公司取名字大全比较好的网络优化公司
  • 网站备案号在哪里查询营销网站建设创意
  • 企业网站空间网页模板怎么用
  • 网站获取访客百度一下官网首页
  • 婚恋网站制作要多少钱南昌seo推广公司
  • 上海网站建设费用多少怎么注册自己的网址
  • 做网站使用明星照片可以吗全部列表支持安卓浏览器软件下载
  • 临夏网站制作线上营销手段
  • webstorm网站开发配置长沙h5网站建设
  • 深圳制作外贸网站深圳网络营销策划
  • 如何学习网站开发编程seo工资一般多少
  • 有域名和主机怎么做网站bt搜索引擎下载
  • 合作seo公司网站关键词优化推广
  • 深圳网站建设营销策划最新消息
  • 手机网站插件代码手机网站智能建站
  • 10g网站流量东莞网站建设推广品众
  • 如何做网站线上推广公司
  • 河北网站推广优化百度客服电话24小时人工服务热线
  • 南康建设局官方网站域名信息查询网站
  • 网站建设制作pdf网站seo优化方案设计
  • 从哪看出网站的建站公司希爱力双效片用后感受
  • 青岛商务学校网站建设广州百度seo 网站推广
  • 企业电商网站模板seo最新
  • wordpress 汽车租赁怎么优化一个网站
  • 长沙关键词优化推荐谷歌seo外包公司哪家好