当前位置: 首页 > news >正文

openshift wordpress 中文东莞seo外包公司

openshift wordpress 中文,东莞seo外包公司,做设计去那些网站找素材,相同网站名2024年7月23日, 亚马逊云科技的AI模型托管平台Amazon Bedrock正式上线了Meta推出的超级参数量大语言模型 - Llama 3.1模型,小李哥也迫不及待去体验和试用了该模型,那这么多参数量的AI模型究竟强在哪里呢?Llama 3.1模型是Meta&…

2024年7月23日, 亚马逊云科技的AI模型托管平台Amazon Bedrock正式上线了Meta推出的超级参数量大语言模型 - Llama 3.1模型,小李哥也迫不及待去体验和试用了该模型,那这么多参数量的AI模型究竟强在哪里呢?Llama 3.1模型是Meta(脸书)迄今为止最先进、最强大的模型。这一系列模型包含了参数大小分别为8B70B405B的模型,在多个行业热门基准测试中表现十分出色,并为生成式AI云端应用解锁了丰富、全新的无限可能。

在新一代版本中,所有Llama 3.1模型都支持128K上下文长度(相比Llama 3版本增加了120K tokens长度),这意味着新版本的模型其上下文处理能力是Llama 3模型的16倍!并且在多语言对话场景中表现出色,支持包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语在内的八种语言。

Meta推出的三款新模型是什么?

现在开发者们已经可以在亚马逊云科技的Amazon Bedrock服务中使用来自Meta的三款全新的 Llama 3.1 模型,帮助开发者构建、测试并负责任地扩展他们的生成式 AI创意应用:

  • Llama 3.1 405B

    405B是全球公开可用的参数最多的大型语言模型,根据 Meta 的说法,这款模型为AI整个行业作为全新的模型标准,非常适合企业级应用和科研研发场景。该模型尤其适用于生成合成数据,从而帮助改进较小的Llama模型,以及通过模型蒸馏技术将知识传递给更小的模型(训练自定义模型)。Llama 3.1 405B在通用知识、长篇文本生成、多语言翻译、机器翻译、编程、数学、工具使用、增强的上下文理解以及高级推理和决策能力方面表现十分出色。
  • Llama 3.1 70B

    70B非常适合内容创作、AI对话、语言理解、研发和开发者/企业应用场景。该模型在文本摘要、文本分类、情感分析和细微推理、语言建模、对话系统、代码生成和任务指令执行方面表现优异。
  • Llama 3.1 8B

    更适合计算资源有限的场景。该模型在低延迟推理要求下,擅长文本摘要、文本分类、情感分析和语言翻译等简单任务。

Meta还对 Llama 3.1在150多个热门基准数据集上进行了性能测评,涵盖了多种语言类别,并通过人力评估进行了二次验证。如以下图表所示,Llama 3.1在所有主要基准类别中都优于Llama 3。

如何保障Llama AI大模型使用中的安全性?

开发者在使用Llama大模型时可以结合Llama 3.1的负责任AI功能,以及Amazon Bedrock提供的数据治理和模型评估特性,放心地构建安全且可靠的生成式 AI 应用。

Amazon Bedrock的安全防护措施(Guardrails)

通过为不同的模型使用场景创建多个配置不同的Guardrails,开发者可以为用户与生成式AI应用之间的交互建立安全保障。具体如下:

  • 根据具体的用例和负责任的AI政策,实施自定义的保护措施。
  • 持续监控和分析用户输入和模型响应,发现可能违反自定义安全策略的情况。
  • 检测模型响应中的“幻觉”(即不基于自定义数据或与用户查询无关的回答)。
  • 对不同模型(包括自定义和第三方模型)进行评估。

Amazon Bedrock 上的模型评估

开发者仅需可几步就可以对Amazon Bedrock上的模型进行评估、比较并选择适合使用场景的最佳Llama模型。通过Amazon Bedrock上的模型评估,开发者可以选择:

  • 自动评估,评估预定义指标如准确性、鲁棒性和毒性。
  • 人工评估,评估自定义指标如相关性、风格和与品牌声音的对齐度等。
  • 提供内置的多个不同测试场景数据集,或者导入自定义数据集。

 

如何在亚马逊云科技上体验Llama3.1?

通过控制台界面使用Llama3.1

1. 进入亚马逊云科技控制台,点击Amazon Bedrock服务

2. 选择区域俄勒冈(Oregon),进入“Model Access”界面开启Llama 405B模型访问。 

 3. 再点击左侧菜单栏“Playgrounds”下的“Text”界面,选择模型“Llama 405B”。输入我们想问的问题,就可以得到最终的405B大模型回复了。

通过Shell命令行访问

同时我们可以用AWS CLI在shell命令行中调用Llama 3.1 405B大模型,我们运行以下命令。

aws bedrock-runtime invoke-model \--model-id meta.llama3-1-405b-instruct-v1:0 \
--body "{\"prompt\":\" [INST]You are a very intelligent bot with exceptional critical thinking[/INST] I went to the market and bought 10 apples. I gave 2 apples to your friend and 2 to the helper. I then went and bought 5 more apples and ate 1. How many apples did I remain with? Let's think step by step.\",\"max_gen_len\":512,\"temperature\":0.5,\"top_p\":0.9}" \--cli-binary-format raw-in-base64-out \--region us-west-2 \invoke-model-output.txt

参数解释:

1)aws bedrock-runtime invoke-model:调用模型推理的API方法

2) model-id meta.llama3-1-405b-instruct-v1:0:Llama 3.1 405B模型ID

3)body.prompt: 模型提示词

4)body.max_gen_len: 最大输出token

5)  body. temperature、Top P:模型随机性参数

6)--cli-binary-format raw-in-base64-out:输出编码格式

7)--region us-west-2:模型所在区域

通过Python代码调用Llama 405B API

我们可以使用亚马逊云科技提供的Python SDK Boto3来调用访问Amazon Bedrock上的Llama 3.1 405B大模型,示例代码如下:

import boto3
from botocore.exceptions import ClientError# Create a Bedrock Runtime client in the AWS Region you want to use.
client = boto3.client("bedrock-runtime", region_name="us-west-2")# Set the model ID, e.g., Llama 3 8b Instruct.
model_id = "meta.llama3-1-405b-instruct-v1:0"# Start a conversation with the user message.
user_message = "Describe the purpose of a 'hello world' program in one line."
conversation = [{"role": "user","content": [{"text": user_message}],}
]try:# Send the message to the model, using a basic inference configuration.response = client.converse(modelId=model_id,messages=conversation,inferenceConfig={"maxTokens": 512, "temperature": 0.5, "topP": 0.9},)# Extract and print the response text.response_text = response["output"]["message"]["content"][0]["text"]print(response_text)except (ClientError, Exception) as e:print(f"ERROR: Can't invoke '{model_id}'. Reason: {e}")exit(1)

以上就是在亚马逊云科技上调用Meta最新的超级大语言模型Llama 3.1 405B的全部步骤。欢迎大家关注小李哥未来获取更多国际前沿的亚马逊云科技生成式AI云开发/云架构方案。 

http://www.ds6.com.cn/news/121541.html

相关文章:

  • 怎么做物流网站代理网站优化关键词
  • 备案后修改网站名称百度拍照搜题
  • 高端网站设计企业网站建设cpu游戏优化加速软件
  • wordpress删除边栏珠海百度搜索排名优化
  • 南阳做网站推广辅导机构
  • 中国搜索网站提交入口杭州seo博客有哪些
  • wordpress性能2020站群seo系统
  • 产品网站怎么做成都做整站优化
  • 找做网站个人深圳网络推广有几种方法
  • 网站搭建培训学校怎么搭建一个网站
  • 微信高端网站建设合肥seo排名优化公司
  • 电脑网站拒绝连接怎么解决韩国网站
  • 资源搜索网站是怎么做的世界羽联巡回赛总决赛
  • 对网站内容建设的建议seo推广怎么入门
  • 苏州网站关键词推广制作公司网页多少钱
  • 有哪些做动图的网站电商运营培训学费多少
  • 学校网站模板代码aso优化贴吧
  • 淘宝网官方网站网页版网络宣传方式有哪些
  • 手机网站和微网站东莞疫情最新情况
  • 以做网站为毕设软文代写自助发稿平台
  • 中国现代公路建设有限公司网站商家推广平台有哪些
  • 做旅游去哪个网站找图央视新闻最新消息今天
  • 昆明网站优化百度竞价关键词价格查询工具
  • 站长工具关键词挖掘关键词查询工具免费
  • 协会网站建设方案seo教育
  • wordpress 幻灯数据库移动建站优化
  • 洛阳营销型网站广告联盟平台自动赚钱
  • 个人做网站的好处广州专业seo公司
  • 服务器做网站用什么环境好攀枝花网站seo
  • ps做网站尺寸seo是怎么优化上去