当前位置: 首页 > news >正文

南昌大型网站制作正规seo排名公司

南昌大型网站制作,正规seo排名公司,手机免费建站工具,国家企业信息公示系统官网平台实际问题研究中,常常遇到多变量问题,变量越多,问题往往越复杂,且各个变量之间往往有联系。于是,我们想到能不能用较少的新变量代替原本较多的旧变量,且使这些较少的新变量尽可能多地保留原来变量所反映的信…

         实际问题研究中,常常遇到多变量问题,变量越多,问题往往越复杂,且各个变量之间往往有联系。于是,我们想到能不能用较少的新变量代替原本较多的旧变量,且使这些较少的新变量尽可能多地保留原来变量所反映的信息

比如说一件上衣,有身长、袖长、胸围、腰围等等十多个指标,将型号分这么多很麻烦,因此,厂家将十多项指标综合成3项指标,分别反映长度、胖瘦、特殊体型。

 变量具有相关性,同时就意味着反映的信息有重叠性,主成分分析就是将重复的变量(关系紧密的变量)删去,建立尽可能少的、互相无关的新变量。

设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析法,也是数学上用来降维的一种方法。 

通过PCA将n维原始特征映射到k维上(k<n),称这k维为主成分。

找新的维度实质上要使数据间的方差够大,即在新维度下坐标点足够分散、数据间有区分。本质上也就是在做基变换。

下图是一个例子,将5个点降维到一条直线上。

 代数上,可以理解为m × n的原始样本X,与n×k阶的矩阵W做矩阵乘法,得到m×k阶低维矩阵Y

分析思想

        假设有n个样板,p个指标,则可以构成大小为n×p的样本矩阵X:

x=\begin{bmatrix} x_{11} &x_{12} &... &x_{1p} \\ x_{21} &x_{22} & ...& x_{2p} \\ ... &... & ... & ...\\ x_{n1} &x_{n2} &... & x_{np} \end{bmatrix}=(x_1,x_2,...x_p)

假设我们想找到新的一组变量z_1,z_2,...,z_m(m\le p),其满足

\left\{\begin{matrix} z_1=l_{11}x_1+l_{12}x_2+...+l_{1p}x_p\\ z_2=l_{21}x_1+l_{22}x_2+...+l_{2p}x_p\\ ...\\ z_m=l_{m1}x_1+l_{m2}x_2+...+l_{mp}x_p \end{matrix}\right. 

系数l_{ij}确定原则:

  • z_iz_j(i\neq j;i,j=1,2,...,m) 线性无关
  • z_kx_1,x_2,...x_p线性组合中方差第k大者,称原变量指标的第k主成分

PCA计算步骤

  1. 标准化处理X_{ij}=\frac{x_{ij}-\overline{x_j}}{S_j}
  2. 计算标准化样本的协方差矩阵R=\begin{bmatrix} r_{11} &r_{12} &... &r_{1p} \\ r_{21} &r_{22} & ...& r_{2p} \\ ... &... & ... & ...\\ r_{n1} &r_{n2} &... & r_{np} \end{bmatrix}
  3. 计算R的特征值和特征向量(特征值从大到小排序)
  4. 计算主成分贡献率以及累计贡献率
  5. 贡献率\alpha_i=\frac{\lambda_i}{\sum_{k=1}^{p}\lambda_k}(i=1,2,...,p)
  6. 累计贡献率\sum G=\frac{\sum_{k-1}^{i}\lambda}{\sum_{k=1}^{p} \lambda_k }(i=1,2,...,p)
  7. 写出主成分:一般取累计贡献率超过80%的特征值所对应的第1,2,...,m个主成分。其中第 i 个是F_i=a_{1i}X_1+a_{2i}X_2+...+a_{pi}X_p(i=1,2,...,m) (a_i是第i个特征向量)
  8. 根据系数分析主成分代表的意义

 Python代码

         这段代码将Iris数据集降维到二维空间,并使用散点图展示不同类别的鸢尾花在降维后的空间中的分布情况。详见注释。

import matplotlib.pyplot as plt  # 加载matplotlib用于数据的可视化
from sklearn.decomposition import PCA  # 加载PCA算法包
from sklearn.datasets import load_iris  # 从sklearn库中导入load_iris函数,用于加载Iris数据集。data = load_iris()  # 使用load_iris函数加载Iris数据集。
y = data.target  # 提取数据集的标签(目标变量),表示不同种类的鸢尾花。
x = data.data  # 提取数据集的特征,表示鸢尾花的四个特征。
pca = PCA(n_components=2)  # 加载PCA算法,设置降维后主成分数目为2
reduced_x = pca.fit_transform(x)  # 对原始数据进行PCA降维,将数据转换为新的二维空间。
red_x, red_y = [], []
blue_x, blue_y = [], []
green_x, green_y = [], []
#  初始化三个颜色类别(红色、蓝色、绿色)的坐标列表。
for i in range(len(reduced_x)):  # 遍历降维后的数据if y[i] == 0:  # 如果数据点属于第一类鸢尾花。red_x.append(reduced_x[i][0])red_y.append(reduced_x[i][1])# 将该点在降维后的第一个主成分的坐标添加到红色类别的x坐标列表中。# 将该点在降维后的第二个主成分的坐标添加到红色类别的y坐标列表中。elif y[i] == 1:blue_x.append(reduced_x[i][0])blue_y.append(reduced_x[i][1])else:green_x.append(reduced_x[i][0])green_y.append(reduced_x[i][1])
# 可视化
plt.scatter(red_x, red_y, c='r', marker='x')
plt.scatter(blue_x, blue_y, c='b', marker='D')
plt.scatter(green_x, green_y, c='g', marker='.')
plt.show()

结果

http://www.ds6.com.cn/news/19681.html

相关文章:

  • 做柜子好的设计网站百度公司高管排名
  • 做研学的网站百度助手app免费下载
  • 排版设计说明百度笔记排名优化
  • 随州网站建设价格浙江搜索引擎优化
  • 企业品牌类网站网站推广的技术有哪些
  • 网站建设子目录网络营销的主要特点有哪些
  • 基础展示营销型型网站海外网络推广方案
  • 做seo需要建网站吗谷歌广告联盟怎么做
  • 网站颜色搭配网站女教师遭网课入侵直播录屏曝光8
  • vs2010做的网站百度手机助手下载苹果版
  • 网站开发的基本流程图郑州seo软件
  • 做一个网站需要投入多少钱seo销售好做吗
  • 中国做网站公司排名深圳seo关键词优化
  • 网站设计设计方案专业恶意点击软件
  • 英文网站开发公司seo排名赚挂机赚钱软件下载
  • 独立站店铺怎么注册成都网站制作维护
  • qq空间做宣传网站网络推广公司排行榜
  • 企业门户网站源码下载网站seo推广公司靠谱吗
  • 网站如何做淘宝联盟推广郑州seo关键词排名优化
  • 网站做的好看术语成都百度推广公司联系电话
  • 网站设计的软件今天的新闻 联播最新消息
  • 苏州专业高端网站建设公司湖南有实力seo优化哪家好
  • 网站开发是前端开发吗百度竞价排名是什么
  • 网站开发 用户角色2022千锋教育培训收费一览表
  • 做网站是什么公司企业营销策划方案范文
  • 如何在网站做推广网页设计大作业
  • 公积金网站怎么做增员网站建设黄页免费观看
  • 武汉网站建设外包免费推广平台
  • 电商网站开发prd互联网营销师课程
  • 蚌埠网站建设哪家好网上广告宣传怎么做