当前位置: 首页 > news >正文

安丘网站制作桔子seo

安丘网站制作,桔子seo,北京市网上服务平台登录,开发网站去哪里学大家好,今天我们来继续看看 RAG 落地的一些有趣的事儿,从技术社群早上的讨论开始,喜欢技术交流的可以文末加入我们 一、从一周出Demo、半年用不好说起 最近读了读2024-傅盛开年AI大课,其中有讲到RAG环节,三张片子比较…

大家好,今天我们来继续看看 RAG 落地的一些有趣的事儿,从技术社群早上的讨论开始,喜欢技术交流的可以文末加入我们

在这里插入图片描述

一、从一周出Demo、半年用不好说起

最近读了读2024-傅盛开年AI大课,其中有讲到RAG环节,三张片子比较有趣。

首先,用检索的方法配合大模型进行任务处理,可以很好的使用企业数据进行知识问答

这是继是当前为大家所熟知的RAG问答范式了。

图片

其次,RAG开源框架很多,可现实很骨感

片子里的那句话说的很现实,一周出Demo,半年用不好

图片

例如,目前已经开源的RAG框架包括12种【还不全面】,其中,排在前5的为大家所熟知:

1)LangChain: https://github.com/langchain-ai/langchain/

2)QAnything: https://github.com/netease-youdao/QAnything/tree/master

3)LlamaIndex: https://github.com/run-llama/llama_index/

4)langchainchat: https://github.com/chatchat-space/Langchain-Chatchat/releases/tag/v0.2.8

5) FastGPT :https://github.com/labring/FastGPT

6)langchain4j :https://github.com/langchain4j/langchain4j

7)Unstructured :https://github.com/Unstructured-IO/unstructured

8)GPT-RAG :https://github.com/Azure/GPT-RAG

9)Quivr :https://github.com/StanGirard/quivr

10)Dify :https://github.com/langgenius/dify

11)Verba :https://github.com/weaviate/Verba

12)danswer:https://github.com/danswer-ai/danswer

最后,给出的高级套件,其中涉及到知识预处理、语义理解和改写、混合检索引擎、自动化质量评估体系、微调效果校准等多个例子。

图片

二、现实实践优化探索与真实反馈

最近技术社群,一个小伙伴分享了一个工作《RAG探索之路的血泪史及曙光》,读了一下,讲的也很不错,推荐给大家读一读。

agent的技术发展流程:

图片

朴素RAG的实现方式:

图片

针对文本切割的一些经验:

图片

此外,在chatglm金融问答比赛中的一些方案

图片

在总结侧,可以同时结合正则、关键词抽取、文档问答、ICL、分块文本信息加入标题等,提升效果。

图片

当然,方案是方案,其中一些有趣的讨论:

Q:我对于RAG相当没有信心。两个问题实在让我跪了:1)Retrieval明明是对的。但是LLM根据Retrieval结果回答问题出错。睁眼说瞎话的几率还是明显大于用户可以接收的概率(用户一般只能接受0.1%的错误率);2)多跳逻辑无法通过Retrieval来做。比如查询Elon musk的兄弟叫什么名字,可能资料里只有Elon的妈妈是谁,Elon妈妈生了几个孩子。需要合成这个逻辑。优化prompt template+使用GPT4+使用CoT+使用reference generation+使用NLI,都没办法让错误率到1%以下。还是会偶尔胡编……

A: reasoning 还是有存在价值的,用 llm 推理是一条路径。不过也不唯一。好问题。第一个我们遇到过,最后通过优化 prompt template 和自定义答复模板解决;第二个建议试试用graph database 用来召回,特别适合解决多度和多跳关系。rag 使用 embedding 我只能说局限太大。

Q:第二个问题,不是graph能解决的。我刚才举的例子能用graph。实际上没法用Graph的例子海量。比如一些客服机器人在回答优惠券的组合使用的问题。

图片

Q:提到的普通文本上下文检索优化中转为html方式后优化检索的方式我非常感兴趣,请问您知道是否有这方面的论文或者公开数据集吗?

A: 数据源有以下几种形式:Markdown。直接使用 Python-Markdown转化到 Html。pdf。可以找相关库转化为 Markdown,再转化为 Html,有些包也支持直接转。Html。拿来用即可。关于 Html 检索,是我自己实现的逻辑,主要阶段有两个:分片入库。

主要思路是,识别 html 中的 header,paragraph和 ol,ul 等标记。并将其转化为元数据,连同 embedding 的结果一同保存到vector store 中。

元数据应该包含:分片来自的源文件分片 id,应该符合源文件中出现的原始顺序递增。这个挺重要,会用于后面上下文检索。分片的 html tag,特别是需要通过 header 体现自己隶属于哪个层级。

检索。如果命中某个分片,则获取分片的元数据。然后根据所属的层级信息进行处理上下文补全:vector store 中当前层级的所有分片都找到。这里就不是基于 vector similarity 检索了,一个小技巧是将层级直接体现在字段中,按字段直接索引。如果发送给 llm context 还有剩余,可以再找兄弟平行层级;如果还有剩余可以找父层级。

技术交流&资料

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

成立了大模型技术交流群,本文相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:来自CSDN + 技术交流

通俗易懂讲解大模型系列

  • 做大模型也有1年多了,聊聊这段时间的感悟!

  • 用通俗易懂的方式讲解:大模型算法工程师最全面试题汇总

  • 用通俗易懂的方式讲解:我的大模型岗位面试总结:共24家,9个offer

  • 用通俗易懂的方式讲解:大模型 RAG 在 LangChain 中的应用实战

  • 用通俗易懂的方式讲解:一文讲清大模型 RAG 技术全流程

  • 用通俗易懂的方式讲解:如何提升大模型 Agent 的能力?

  • 用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!

  • 用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了

  • 用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型

  • 用通俗易懂的方式讲解:使用 LangChain 和大模型生成海报文案

  • 用通俗易懂的方式讲解:ChatGLM3-6B 部署指南

  • 用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了

  • 用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统

  • 用通俗易懂的方式讲解:在 Ubuntu 22 上安装 CUDA、Nvidia 显卡驱动、PyTorch等大模型基础环境

  • 用通俗易懂的方式讲解:Llama2 部署讲解及试用方式

  • 用通俗易懂的方式讲解:基于 LangChain 和 ChatGLM2 打造自有知识库问答系统

  • 用通俗易懂的方式讲解:一份保姆级的 Stable Diffusion 部署教程,开启你的炼丹之路

  • 用通俗易懂的方式讲解:对 embedding 模型进行微调,我的大模型召回效果提升了太多了

  • 用通俗易懂的方式讲解:LlamaIndex 官方发布高清大图,纵览高级 RAG技术

  • 用通俗易懂的方式讲解:为什么大模型 Advanced RAG 方法对于AI的未来至关重要?

  • 用通俗易懂的方式讲解:使用 LlamaIndex 和 Eleasticsearch 进行大模型 RAG 检索增强生成

  • 用通俗易懂的方式讲解:基于 Langchain 框架,利用 MongoDB 矢量搜索实现大模型 RAG 高级检索方法

  • 用通俗易懂的方式讲解:使用Llama-2、PgVector和LlamaIndex,构建大模型 RAG 全流程

总结

本文主要介绍了RAG现有的一些开源框架以及后续实践环节中大家真实的感受。实际上,RAG作为一个技术方案,目前已经有很多,大家都大差不差。

目前,大模型和RAG等技术方案的开源,极大地拉开了大家的门槛,这是好事情,对推动技术和业务发展。但这个有不是好事情,这加剧了公司的竞争。

丢掉幻想,打磨细节。

参考文献

1、傅盛2024开年AI大课PPT

2、https://zhuanlan.zhihu.com/p/664921095

http://www.ds6.com.cn/news/20918.html

相关文章:

  • 用jquery做网站网络竞价推广托管公司
  • 网站建设淘宝详情页百度云网盘资源
  • 外贸专业网站建设seo推广方案
  • 有哪些做特卖的网站有哪些服装品牌营销策划方案
  • 外贸论坛平台如何优化seo关键词
  • 幼儿园网站怎样建设网站创建免费用户
  • 网站建设实验的总结新的网站怎么推广
  • 建设部网站危房鉴定标准规定可口可乐软文营销案例
  • 福州做网站建设搜索量排行
  • 做徽商要做网站吗阿里云自助建站
  • 做网站的前提网络推广的方法你知道几个?
  • 网站哪类业务建设投入会带来间接收益贴吧推广
  • 网站建设与管理 管理课程路由优化大师
  • 珠海公司做网站代运营公司可靠吗
  • 义乌开锁做网站哪个好百度的推广广告
  • 网站建设项目总结建立网站的流程
  • 最便宜的网站seo免费推广软件
  • 做网站的qq兼职seo关键词优化报价
  • qq空间可以做网站吗合肥网络公司
  • 做直播网站一定要idc吗整合营销传播名词解释
  • 网站开发 安全验证seo建站网络公司
  • 手机微网站开发教程关键词优化seo公司
  • 素材网站官网seo优化排名是什么
  • bugku中网站被黑怎么做培训方案
  • 组合图片可以用在网站做链接吗个人网站
  • 网站关键字推广seo排名的公司
  • 郑州做个人网站的公司网络销售工资一般多少
  • 网站流量怎么做公司企业网站建设方案
  • 网站建设优秀网站建设西安网站制作推广
  • 有保障的注册代理赣州seo推广