当前位置: 首页 > news >正文

做招聘网站毕业设计网络营销常见的工具

做招聘网站毕业设计,网络营销常见的工具,wordpress 军事主题,有哪些高端的网站【C介绍】 关于opencv实现有比较好的算法,可以参考这个博客OpenCV去除面积较小的连通域_c#opencv 筛选小面积区域-CSDN博客 但是没有对应opencvsharp实现同类算法,为了照顾懂C#编程同学们,因此将 去除面积较小的连通域算法转成C#代码。 方…

【C++介绍】

关于opencv实现有比较好的算法,可以参考这个博客OpenCV去除面积较小的连通域_c#opencv 筛选小面积区域-CSDN博客

但是没有对应opencvsharp实现同类算法,为了照顾懂C#编程同学们,因此将 去除面积较小的连通域算法转成C#代码。

方法一流程:

//=======函数实现=====================================================================
void RemoveSmallRegion(Mat &Src, Mat &Dst, int AreaLimit, int CheckMode, int NeihborMode)
{int RemoveCount = 0;//新建一幅标签图像初始化为0像素点,为了记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查   //初始化的图像全部为0,未检查  Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1);if (CheckMode == 1)//去除小连通区域的白色点  {//cout << "去除小连通域.";for (int i = 0; i < Src.rows; i++){for (int j = 0; j < Src.cols; j++){if (Src.at<uchar>(i, j) < 10){PointLabel.at<uchar>(i, j) = 3;//将背景黑色点标记为合格,像素为3  }}}}else//去除孔洞,黑色点像素  {//cout << "去除孔洞";for (int i = 0; i < Src.rows; i++){for (int j = 0; j < Src.cols; j++){if (Src.at<uchar>(i, j) > 10){PointLabel.at<uchar>(i, j) = 3;//如果原图是白色区域,标记为合格,像素为3  }}}}vector<Point2i>NeihborPos;//将邻域压进容器  NeihborPos.push_back(Point2i(-1, 0));NeihborPos.push_back(Point2i(1, 0));NeihborPos.push_back(Point2i(0, -1));NeihborPos.push_back(Point2i(0, 1));if (NeihborMode == 1){//cout << "Neighbor mode: 8邻域." << endl;NeihborPos.push_back(Point2i(-1, -1));NeihborPos.push_back(Point2i(-1, 1));NeihborPos.push_back(Point2i(1, -1));NeihborPos.push_back(Point2i(1, 1));}else int a = 0;//cout << "Neighbor mode: 4邻域." << endl;int NeihborCount = 4 + 4 * NeihborMode;int CurrX = 0, CurrY = 0;//开始检测  for (int i = 0; i < Src.rows; i++){for (int j = 0; j < Src.cols; j++){if (PointLabel.at<uchar>(i, j) == 0)//标签图像像素点为0,表示还未检查的不合格点  {   //开始检查  vector<Point2i>GrowBuffer;//记录检查像素点的个数  GrowBuffer.push_back(Point2i(j, i));PointLabel.at<uchar>(i, j) = 1;//标记为正在检查  int CheckResult = 0;for (int z = 0; z < GrowBuffer.size(); z++){for (int q = 0; q < NeihborCount; q++){CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x;CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y;if (CurrX >= 0 && CurrX<Src.cols&&CurrY >= 0 && CurrY<Src.rows)  //防止越界    {if (PointLabel.at<uchar>(CurrY, CurrX) == 0){GrowBuffer.push_back(Point2i(CurrX, CurrY));  //邻域点加入buffer    PointLabel.at<uchar>(CurrY, CurrX) = 1;           //更新邻域点的检查标签,避免重复检查    }}}}if (GrowBuffer.size()>AreaLimit) //判断结果(是否超出限定的大小),1为未超出,2为超出    CheckResult = 2;else{CheckResult = 1;RemoveCount++;//记录有多少区域被去除  }for (int z = 0; z < GrowBuffer.size(); z++){CurrX = GrowBuffer.at(z).x;CurrY = GrowBuffer.at(z).y;PointLabel.at<uchar>(CurrY, CurrX) += CheckResult;//标记不合格的像素点,像素值为2  }//********结束该点处的检查**********    }}}CheckMode = 255 * (1 - CheckMode);//开始反转面积过小的区域    for (int i = 0; i < Src.rows; ++i){for (int j = 0; j < Src.cols; ++j){if (PointLabel.at<uchar>(i, j) == 2){Dst.at<uchar>(i, j) = CheckMode;}else if (PointLabel.at<uchar>(i, j) == 3){Dst.at<uchar>(i, j) = Src.at<uchar>(i, j);}}}//cout << RemoveCount << " objects removed." << endl;
}
//=======函数实现=====================================================================//=======调用函数=====================================================================Mat img;img = imread("D:\\1_1.jpg", 0);//读取图片threshold(img, img, 128, 255, CV_THRESH_BINARY_INV);imshow("去除前", img);Mat img1;RemoveSmallRegion(img, img, 200, 0, 1);imshow("去除后", img);waitKey(0);
//=======调用函数=====================================================================

此段代码包含一个名为RemoveSmallRegion的函数,其功能是从给定的二值图像中移除符合条件的小连通区域。函数接受五个参数:

  1. Mat &Src: 输入的原始二值图像(单通道,通常为黑白图像)。
  2. Mat &Dst: 输出的目标图像,存储经过处理后的结果。
  3. int AreaLimit: 面积阈值,低于该阈值的连通区域会被移除。
  4. int CheckMode: 检查模式,决定要移除的是图像中的小连通白区还是小连通黑区。
    • CheckMode == 1: 移除小连通白区(白色像素点构成的区域)。
    • CheckMode == 0: 移除小连通黑区(黑色像素点构成的区域)。
  5. int NeihborMode: 邻域模式,决定采用4邻域还是8邻域算法进行连通区域扩展。
    • NeihborMode == 1: 使用8邻域算法(包括上下左右和四个对角方向相邻的像素)。
    • NeihborMode == 0: 使用4邻域算法(仅考虑上下左右相邻的像素)。

函数的具体实现步骤如下:

  1. 初始化RemoveCount变量记录移除的连通区域数量,创建与输入图像相同大小的PointLabel矩阵作为标签图像,用于记录每个像素点的检验状态(0:未检查;1:正在检查;2:检查不合格;3:检查合格或无需检查)。

  2. 根据CheckMode确定移除目标,分别针对小连通白区和小连通黑区对PointLabel进行初始化。对于不需要移除的像素点(即背景或前景),将其标签设为3,表示已检查且合格。

  3. 定义NeihborPos容器存储邻域位置,并根据NeihborMode选择使用4邻域或8邻域。

  4. 使用两层嵌套循环遍历输入图像的所有像素点。对于未检查的像素点(标签为0),执行以下操作:

    • 初始化GrowBuffer容器,用于记录当前连通区域内的像素点。
    • 将当前像素点标记为正在检查(标签设为1),并启动基于邻域扩展的生长过程。
    • 使用广度优先搜索(BFS)策略,依次访问GrowBuffer中的像素点及其邻域像素,将未检查的邻域像素加入GrowBuffer并标记为正在检查。
    • 当遍历完所有邻域像素后,根据GrowBuffer的大小与AreaLimit比较,判断该连通区域是否应被移除。
    • 根据判断结果更新GrowBuffer内所有像素点在PointLabel上的标签为2(检查不合格)或保持为1(检查合格)。
  5. 得到最终的PointLabel后,根据CheckMode255取反(即255 * (1 - CheckMode)),用于后续翻转图像像素值。遍历SrcPointLabel,将标签为2的像素点在Dst中翻转颜色(即将白变黑或黑变白),标签为3的像素点保持原色不变。

最后,代码提供了对RemoveSmallRegion函数的调用示例:

  • 读取图像"D:\1_1.jpg",并对其进行二值化处理(阈值为128,反相)。
  • 显示二值化处理后的原始图像。
  • 调用RemoveSmallRegion函数,移除面积小于200的黑区(CheckMode = 0),使用8邻域算法(NeihborMode = 1)。
  • 显示经过处理后的图像。
  • 等待用户按键后关闭窗口。

方法二流程:

//测试
void CCutImageVS2013Dlg::OnBnClickedTestButton1()
{vector<vector<Point> > contours;       //轮廓数组vector<Point2d>  centers;              //轮廓质心坐标 vector<vector<Point> >::iterator itr;  //轮廓迭代器vector<Point2d>::iterator  itrc;       //质心坐标迭代器vector<vector<Point> > con;            //当前轮廓double area;double minarea = 1000;double maxarea = 0;Moments mom;                          // 轮廓矩Mat image, gray, edge, dst;image = imread("D:\\66.png");cvtColor(image, gray, COLOR_BGR2GRAY);Mat rgbImg(gray.size(), CV_8UC3);    //创建三通道图blur(gray, edge, Size(3, 3));                         //模糊去噪threshold(edge, edge, 200, 255, THRESH_BINARY_INV);   //二值化处理,黑底白字//--------去除较小轮廓,并寻找最大轮廓--------------------------findContours(edge, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); //寻找轮廓itr = contours.begin();             //使用迭代器去除噪声轮廓while (itr != contours.end()){area = contourArea(*itr);       //获得轮廓面积if (area<minarea)               //删除较小面积的轮廓 {itr = contours.erase(itr);  //itr一旦erase,需要重新赋值}else{itr++;}if (area>maxarea)              //寻找最大轮廓{maxarea = area;}}dst = Mat::zeros(image.rows, image.cols, CV_8UC3);/*绘制连通区域轮廓,计算质心坐标*/Point2d center;itr = contours.begin();while (itr != contours.end()){area = contourArea(*itr);		con.push_back(*itr);            //获取当前轮廓if (area == maxarea){vector<Rect> boundRect(1);  //定义外接矩形集合boundRect[0] = boundingRect(Mat(*itr));cvtColor(gray, rgbImg, COLOR_GRAY2BGR);Rect select;select.x = boundRect[0].x;select.y = boundRect[0].y;select.width = boundRect[0].width;select.height = boundRect[0].height;rectangle(rgbImg, select, Scalar(0, 255, 0), 3, 2);  //用矩形画矩形窗drawContours(dst, con, -1, Scalar(0, 0, 255), 2);    //最大面积红色绘制}elsedrawContours(dst, con, -1, Scalar(255, 0, 0), 2);    //其它面积蓝色绘制con.pop_back();//计算质心mom = moments(*itr);center.x = (int)(mom.m10 / mom.m00);center.y = (int)(mom.m01 / mom.m00);centers.push_back(center);itr++;}imshow("rgbImg", rgbImg);//imshow("gray", gray);//imshow("edge", edge);imshow("origin", image);imshow("connected_region", dst);waitKey(0);return;}

提供的代码为一个使用OpenCV库对输入图像"D:\66.png"进行处理的C++实现,执行以下任务:

  1. 图像预处理:

    • 读取图像并将其从BGR色彩空间转换为灰度图像(cvtColor)。
    • 应用高斯模糊,使用大小为3x3的核来减少噪声(blur)。
    • 对模糊后的图像执行二值阈值处理,阈值设为200,将高于该值的像素设置为白色,其余为黑色(threshold)。
  2. 轮廓检测与筛选:

    • 使用findContours函数在二值化图像上查找外部轮廓,存储在contours容器中。
    • 遍历所有轮廓,通过contourArea函数计算每个轮廓的面积。
      • 删除面积小于最小阈值minarea(初始设定为1000)的噪声轮廓,使用迭代器itr进行动态删除。
      • 同时记录下当前遍历到的最大轮廓面积maxarea
    • 最后保留下来的轮廓为满足面积条件的有效轮廓。
  3. 绘制轮廓与计算质心:

    • 创建一个新的Mat对象dst,用于绘制处理结果。
    • 初始化一个空的centers向量,用于存储各个轮廓的质心坐标。
    • 再次遍历有效轮廓:
      • 将当前轮廓添加到临时向量con中。
      • 计算当前轮廓面积。
      • 如果面积等于最大面积maxarea,则执行以下操作:
        • 计算当前轮廓的外接矩形,并用绿色边框在RGB图像rgbImg上绘制。
        • 在最终输出图像dst上以红色绘制当前轮廓。
      • 否则,在dst上以蓝色绘制当前轮廓。
      • 使用moments函数计算当前轮廓的矩,进而得到质心坐标,并将其添加到centers向量。
      • 清除临时向量con中的当前轮廓。
    • 显示各阶段处理结果:
      • RGB图像rgbImg(仅包含最大轮廓的绿色外接矩形)。
      • 原始灰度图像gray(注释掉未显示)。
      • 二值边缘图像edge(注释掉未显示)。

【C#版本效果展示】

方法一使用opencvsharp效果:

方法二opencvsharp效果:

可见已经用opencvsharp复刻C++版本算法。

【测试环境】

vs2019

netframework4.7.2

opencvsharp4.8.0

【源码下载地址】

https://download.csdn.net/download/FL1623863129/89074335

http://www.ds6.com.cn/news/38309.html

相关文章:

  • ios网页游戏seo网站优化方案案例
  • 网站后台登录系统是怎么做的优化防控举措
  • 青岛城阳做网站数据分析培训班
  • 电商网站建设方案软文推广的优点
  • 惠州网站建设领头羊东莞疫情最新消息今天
  • 毕业设计做购物网站的要求百度推广管家
  • 上海做淘宝网站建设怎样制作一个网站
  • 外行学网页制作与网站建设从入门到精通南昌seo服务
  • 廊坊网站推广排名营销策划主要做些什么
  • 专门做美食的视频网站seo网站推广主要目的不包括
  • 网站建设公司该怎么销售营销软文范例大全100字
  • 网页打不开了外贸seo是什么意思
  • 未备案 网站加速百度搜索网站排名
  • 一个备案可以做几个网站吗网站模板
  • 老网站删除做新站会影响收录吗微信推广平台自己可以做
  • 优秀的个人博客网站哪个好用?
  • 那家财经网站做的好seo排名首页
  • 如何查看用wordpress建的站点站长之家seo查找
  • 高端定制网站开发网站模板设计西安计算机培训机构哪个最好
  • 无锡小程序开发工作室南昌seo排名优化
  • 贵阳制作网站百度贴吧的互动社区
  • 电子商务网站如何设计营销方案策划书
  • 河南网站营销靠谱seo优化一般包括
  • 深圳哪家网站公司好不限次数观看视频的app
  • 做网站买什么服务器吗seo点击工具
  • csgo翻硬币网站开发长沙网站托管优化
  • 做网站时如何将前端连接到后台电子邮件营销
  • wordpress火车头长沙seo行者seo09
  • 建网站排名网页设计大作业
  • 美国专门做特卖的网站有哪些网站关键词优化教程