视频 播放网站怎么做企业如何进行品牌推广
【模板】并查集
题目描述
如题,现在有一个并查集,你需要完成合并和查询操作。
输入格式
第一行包含两个整数 N , M N,M N,M ,表示共有 N N N 个元素和 M M M 个操作。
接下来 M M M 行,每行包含三个整数 Z i , X i , Y i Z_i,X_i,Y_i Zi,Xi,Yi 。
当 Z i = 1 Z_i=1 Zi=1 时,将 X i X_i Xi 与 Y i Y_i Yi 所在的集合合并。
当 Z i = 2 Z_i=2 Zi=2 时,输出 X i X_i Xi 与 Y i Y_i Yi 是否在同一集合内,是的输出
Y
;否则输出 N
。
输出格式
对于每一个 Z i = 2 Z_i=2 Zi=2 的操作,都有一行输出,每行包含一个大写字母,为 Y
或者 N
。
样例 #1
样例输入 #1
4 7
2 1 2
1 1 2
2 1 2
1 3 4
2 1 4
1 2 3
2 1 4
样例输出 #1
N
Y
N
Y
提示
对于 30 % 30\% 30% 的数据, N ≤ 10 N \le 10 N≤10, M ≤ 20 M \le 20 M≤20。
对于 70 % 70\% 70% 的数据, N ≤ 100 N \le 100 N≤100, M ≤ 1 0 3 M \le 10^3 M≤103。
对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 1 0 4 1\le N \le 10^4 1≤N≤104, 1 ≤ M ≤ 2 × 1 0 5 1\le M \le 2\times 10^5 1≤M≤2×105, 1 ≤ X i , Y i ≤ N 1 \le X_i, Y_i \le N 1≤Xi,Yi≤N, Z i ∈ { 1 , 2 } Z_i \in \{ 1, 2 \} Zi∈{1,2}。
思路
首先,定义一个大小为 N N N的数组pre
,用于记录每个元素的父节点。init
函数用于初始化并查集,使得每个元素的父节点都是自己。
root
函数用于查找元素 x x x的根节点,即在并查集中寻找 x x x所在集合的代表元素。这里采用路径压缩的方法,即在查找过程中,将 x x x到根节点的路径上的所有节点的父节点都直接设为根节点,从而优化后续查找效率。
merge
函数用于合并两个集合,具体操作是找到两个元素的根节点,如果根节点不同,就将其中一个集合的根节点的父节点设置为另一个集合的根节点,从而实现两个集合的合并。
check
函数用于检查两个元素是否在同一集合中,通过比较两个元素的根节点是否相同来判断。如果相同,输出"Y";如果不同,输出"N"。
在main
函数中,首先读取元素的数量 n n n和操作的数量 m m m,然后进行初始化。接下来,根据输入的操作类型,进行合并或者检查操作。如果操作类型为1,执行merge
函数合并两个集合;如果操作类型为2,执行check
函数检查两个元素是否在同一集合中。
使用路径压缩优化后,代码运行用时大幅度缩短。但是路径压缩会破坏树形结构。
AC代码
#include <iostream>
#define AUTHOR "HEX9CF"
using namespace std;const int N = 1e5 + 7;int pre[N];void init(int x) {for (int i = 1; i <= x; i++) {pre[i] = i;}
}int root(int x) {int i = x;while (pre[i] != i) {i = pre[i];}return pre[x] = i;
}void merge(int x, int y) {x = root(x);y = root(y);if (x == y) {return;}pre[x] = y;
}void check(int x, int y) {x = root(x);y = root(y);if (x == y) {printf("Y\n");} else {printf("N\n");}
}int main() {int n, m;scanf("%d %d", &n, &m);init(n);while (m--) {int z, x, y;scanf("%d %d %d", &z, &x, &y);if (z == 1) {merge(x, y);} else {check(x, y);}}return 0;
}