当前位置: 首页 > news >正文

个人可以做医疗信息网站吗郑州seo代理公司

个人可以做医疗信息网站吗,郑州seo代理公司,项目可行性报告怎样写,2008系统做网站一 图像轮廓 具有相同颜色或强度的连续点的曲线。 图像轮廓的作用 可以用于图像分析 物体的识别与检测 注意 为了检测的准确性,需要先对图像进行二值化或Canny操作。 画轮廓时会修改输入的图像。 轮廓查找的API findContours(img,mode,ApproximationMode,...)…

一 图像轮廓

具有相同颜色或强度的连续点的曲线。
在这里插入图片描述
图像轮廓的作用
可以用于图像分析
物体的识别与检测

注意

为了检测的准确性,需要先对图像进行二值化或Canny操作。
画轮廓时会修改输入的图像。

轮廓查找的API

findContours(img,mode,ApproximationMode,...)
两个返回值,contours和hierarchy
mode
RETR_EXTERNAL=0,表示只检测外轮廓。
RETR_LIST=1,检测的轮廓不建立等级关系
RETR_CCOMP=2,每层最多两级
RETR_TREE=3,桉树形存储轮廓

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

ApproximationMode
CHAIN_APPROX_NONE,保存所有轮廓上的点
CHAIN_APPROX_SIMPLE,只保存角点
import cv2
import numpy as npimg=cv2.imread('./9615.jpg')
print(img.shape)#转变成单通道
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
print(gray.shape)#二值化
ret,binary=cv2.threshold(gray,150,255,cv2.THRESH_BINARY)#轮廓查找
contours,hierarchy=cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
print(contours)
cv2.imshow('img',img)
cv2.waitKey(0)

二 绘制轮廓

如何绘制轮廓

drawContours(img,contours,contourIdx,color,thickness...)
contourIdx,-1表示绘制所有轮廓
color,颜色(0,0,255)
thickness,线宽,-1是全部填充
import cv2
import numpy as npimg=cv2.imread('./9615.jpg')
print(img.shape)#转变成单通道
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
print(gray.shape)#二值化
ret,binary=cv2.threshold(gray,150,255,cv2.THRESH_BINARY)#轮廓查找
contours,hierarchy=cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
print(contours)#绘制轮廓
img1=cv2.drawContours(img,contours,0,(0,0,255),5)#cv2.imshow('img',img)
cv2.imshow('img1',img1)
cv2.waitKey(0)

三 轮廓的面积和周长

1 轮廓的面积

contourArea(contour)
contour:轮廓

2 轮廓的周长

arcLength(curve,closed)
curve:轮廓
closed:是否是闭合的轮廓
import cv2
import numpy as npimg=cv2.imread('./9615.jpg')
print(img.shape)#转变成单通道
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
print(gray.shape)#二值化
ret,binary=cv2.threshold(gray,150,255,cv2.THRESH_BINARY)#轮廓查找
contours,hierarchy=cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
print(contours)#绘制轮廓
img1=cv2.drawContours(img,contours,0,(0,0,255),5)#计算面积
area=cv2.contourArea(contours[0])
print("area=%d"%(area))# 计算周长
len=cv2.arcLength(contours[0],True)
print("len=%d"%(len))
#cv2.imshow('img',img)
cv2.imshow('img1',img1)
cv2.waitKey(0)

四 多边形逼近与凸包

在这里插入图片描述

1 多边形逼近

approxPolyDP(curve,epsilon,closed)
curve:轮廓
epsilon
closed:是否是闭合的轮廓

2 凸包

convexHull(points,clockwise,...)
points:轮廓
clockwise:顺时针绘制

轮廓查找:

import cv2
import numpy as npdef drawShape(src,points):i=0while i<len(points):if(i==len(points)-1):x, y = points[i][0]x1, y1 = points[0][0]cv2.line(src, (x, y), (x1, y1), (0, 0, 255), 1)else:x, y = points[i][0]x1, y1 = points[i + 1][0]cv2.line(src, (x, y), (x1, y1), (0, 0, 255), 1)i=i+1img=cv2.imread('./palm.png')
#print(img.shape)#转变成单通道
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
print(gray.shape)#二值化
ret,binary=cv2.threshold(gray,150,255,cv2.THRESH_BINARY_INV)#轮廓查找
contours,hierarchy=cv2.findContours(binary,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_NONE)
#print(contours)#绘制轮廓
img1=cv2.drawContours(img,contours,-1,(0,255,0),5)e=20approx=cv2.approxPolyDP(contours[0],e,True)drawShape(img,approx)hull=cv2.convexHull(contours[0])
drawShape(img1,hull)
#cv2.imshow('img',img)
cv2.imshow('img1',img1)
cv2.waitKey(0)

凸包绘制

在这里插入图片描述

五 外接矩形

最小外接矩形
最大外接矩形
外接矩形
在这里插入图片描述
最小外接矩形

minAreaRect(points)
points:轮廓
返回值:RotatedRect
RotatedRect
x,y
width,height
angle

最大外接矩形

boundingRect(array)
array:轮廓
返回值:Rect 
import cv2
import numpy as npdef drawShape(src,points):i=0while i<len(points):if(i==len(points)-1):x, y = points[i][0]x1, y1 = points[0][0]cv2.line(src, (x, y), (x1, y1), (0, 0, 255), 1)else:x, y = points[i][0]x1, y1 = points[i + 1][0]cv2.line(src, (x, y), (x1, y1), (0, 0, 255), 1)i=i+1img=cv2.imread('./Hello.png')
#print(img.shape)#转变成单通道
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
print(gray.shape)#二值化
ret,binary=cv2.threshold(gray,150,255,cv2.THRESH_BINARY)
print(binary.shape)
#轮廓查找cv2.RETR_CCOMP CHAIN_APPROX_NONE
contours,hierarchy=cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#print(contours)#绘制轮廓
#img=cv2.drawContours(img,contours,-1,(0,255,0),2)r=cv2.minAreaRect(contours[1])
box=cv2.boxPoints(r)
box=np.int32(box)cv2.drawContours(img,[box],0,(0,0,255),5)x,y,w,h=cv2.boundingRect(contours[1])cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)cv2.imshow('img',img)cv2.waitKey(0)

在这里插入图片描述

六 车辆统计

窗口的展示
图像/视频的加载
基本图形的绘制
车辆识别
基本图像运算与处理
形态学
轮廓查找

1 涉及到的知识点

加载视频
通过形态学识别车辆
对车辆进行统计
显示车辆统计信息

import cv2
import numpy as npcap=cv2.VideoCapture('video.mp4')while True:ret,frame= cap.read()if(ret==True):cv2.imshow('video',frame)key=cv2.waitKey(1)if(key==27)break
cap.release()
cv2.destroyAllWindows()

形态学处理

import cv2
import numpy as npcap=cv2.VideoCapture('video.mp4')bgsubmog=cv2.bgsegm.createBackgroundSubtractorMOG()#形态学kernel
kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))while True:ret,frame= cap.read()if(ret==True):#灰度cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)#去噪(高斯)blu=cv2.GaussianBlur(frame,(3,3),5)#去背影mask=bgsubmog.apply(blu)#腐蚀erode=cv2.erode(mask,kernel)#膨胀dilate=cv2.dilate(mask,kernel,iterations=2)#闭操作,去掉物体内部的小块close=cv2.morphologyEx(dilate,cv2.MORPH_CLOSE,kernel)cnts,h=cv2.findContours(close,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)for(i,c)in enumerate(cnts):(x,y,w,h)=cv2.boundingRect(c)cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)cv2.imshow('mask',mask)cv2.imshow('erode',erode)cv2.imshow('video',frame)key=cv2.waitKey(1)if(key==27):break
cap.release()
cv2.destroyAllWindows()
http://www.ds6.com.cn/news/47026.html

相关文章:

  • 做网站开发要学什么天津seo关键词排名优化
  • 西安网站建设哪家培训教育机构
  • 做头像的网站空白收录提交入口
  • 网站制作报价明细网站建设在线建站
  • 杭州网站建设wguser河南今日头条最新消息
  • 设计微信公众号的网站吗河南网站优化公司哪家好
  • 浦东网站建设价格怎么建立网站的步骤
  • 商城网站开发的任务书关键词权重查询
  • 靠谱网站建设公司怎么选搜索引擎seo关键词优化方法
  • 外网专门做钙片的网站百度数据平台
  • vue单页面做网站加载慢百度店铺怎么开通
  • web前端和网站开发电商培训
  • 做网站设计的全网推广的方式有哪些
  • 陕西做网站的公司电话乐清网站建设
  • 方便面网络营销推广方案厦门seo网站推广优化
  • 商业网站建设开发中心襄阳网站推广优化技巧
  • 有没有个人做的网站赚流量费上海网站建设公司
  • 怎么做站旅游网站上泡到妞简单网页设计模板html
  • 外贸网站如何做seocps推广
  • 北京做网站费用百度的网站
  • 怎么做网站上翻译泰剧sem优化推广
  • 企业网站建设申请域名磁力狗最佳搜索引擎
  • 长沙河西做网站b2b网站大全免费
  • 设计师网名女如何做seo
  • 南宁网站建公司网站统计器
  • 沂水住房与城乡建设局网站网络推广推广
  • 商务网站制作语言基础百度管理员联系方式
  • 网站建设技术人员域名查询网
  • 网站做ppt模板百度推广开户渠道
  • 四川炜航建筑公司网站线上销售如何找到精准客户