当前位置: 首页 > news >正文

如何做新政府网站栏目武汉seo优化

如何做新政府网站栏目,武汉seo优化,手机有办法做网站吗,建设网络文化网站的请示文章目录 题目标题和出处难度题目描述要求示例数据范围进阶 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题:有序数组的平方 出处:977. 有序数组的平方 难度 2 级 题目描述 要求 给定按非递减顺序排序的整…

文章目录

  • 题目
    • 标题和出处
    • 难度
    • 题目描述
      • 要求
      • 示例
      • 数据范围
      • 进阶
  • 解法一
    • 思路和算法
    • 代码
    • 复杂度分析
  • 解法二
    • 思路和算法
    • 代码
    • 复杂度分析

题目

标题和出处

标题:有序数组的平方

出处:977. 有序数组的平方

难度

2 级

题目描述

要求

给定按非递减顺序排序的整数数组 nums \texttt{nums} nums,返回每个数字的平方组成的新数组,要求也按非递减顺序排序。

示例

示例 1:

输入: nums = [-4,-1,0,3,10] \texttt{nums = [-4,-1,0,3,10]} nums = [-4,-1,0,3,10]
输出: [0,1,9,16,100] \texttt{[0,1,9,16,100]} [0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100] \texttt{[16,1,0,9,100]} [16,1,0,9,100]。排序后,数组变为 [0,1,9,16,100] \texttt{[0,1,9,16,100]} [0,1,9,16,100]

示例 2:

输入: nums = [-7,-3,2,3,11] \texttt{nums = [-7,-3,2,3,11]} nums = [-7,-3,2,3,11]
输出: [4,9,9,49,121] \texttt{[4,9,9,49,121]} [4,9,9,49,121]

数据范围

  • 1 ≤ nums.length ≤ 10 4 \texttt{1} \le \texttt{nums.length} \le \texttt{10}^\texttt{4} 1nums.length104
  • -10 4 ≤ nums[i] ≤ 10 4 \texttt{-10}^\texttt{4} \le \texttt{nums[i]} \le \texttt{10}^\texttt{4} -104nums[i]104
  • nums \texttt{nums} nums 已按非递减顺序排序

进阶

计算每个元素的平方并对新数组排序的解法很简单,你可以使用不同的方法找到时间复杂度 O(n) \texttt{O(n)} O(n) 的解法吗?

解法一

思路和算法

最直观的解法是依次计算数组 nums \textit{nums} nums 中的每个元素的平方并存入新数组中,然后对新数组按非递减顺序排序,即可得到排序后的新数组。

代码

class Solution {public int[] sortedSquares(int[] nums) {int length = nums.length;int[] squares = new int[length];for (int i = 0; i < length; i++) {squares[i] = nums[i] * nums[i];}Arrays.sort(squares);return squares;}
}

复杂度分析

  • 时间复杂度: O ( n log ⁡ n ) O(n \log n) O(nlogn),其中 n n n 是数组 nums \textit{nums} nums 的长度。计算数组 nums \textit{nums} nums 中的每个元素的平方并存入新数组需要 O ( n ) O(n) O(n) 的时间,对新数组排序需要 O ( n log ⁡ n ) O(n \log n) O(nlogn) 的时间,因此时间复杂度是 O ( n log ⁡ n ) O(n \log n) O(nlogn)

  • 空间复杂度: O ( log ⁡ n ) O(\log n) O(logn),其中 n n n 是数组 nums \textit{nums} nums 的长度。对新数组排序需要 O ( log ⁡ n ) O(\log n) O(logn) 的递归调用栈空间。注意返回值不计入空间复杂度。

解法二

思路和算法

解法一没有利用到数组 nums \textit{nums} nums 已经按非递减顺序排序的条件,因此需要对新数组排序,时间复杂度是 O ( n log ⁡ n ) O(n \log n) O(nlogn)。如果利用数组 nums \textit{nums} nums 已经按非递减顺序排序的条件,则不需要对新数组排序,将时间复杂度降低到 O ( n ) O(n) O(n)

由于一个数的平方大小与这个数的绝对值有关,因此考虑数组 nums \textit{nums} nums 中的绝对值最大元素与绝对值最小元素可能出现的位置。

数组 nums \textit{nums} nums 按非递减顺序排序,可能有以下三种情况:

  • 数组 nums \textit{nums} nums 的所有元素都是非负数,元素顺序为绝对值非递减顺序,首个元素的绝对值最小,末尾元素的绝对值最大;

  • 数组 nums \textit{nums} nums 的所有元素都是非正数,元素顺序为绝对值非递增顺序,首个元素的绝对值最大,末尾元素的绝对值最小;

  • 数组 nums \textit{nums} nums 中既有正数也有负数,首个元素或末尾元素的绝对值最大。

对于上述三种情况中的任意一种情况,绝对值最大的元素一定是数组 nums \textit{nums} nums 的首个元素或末尾元素。因此可以从数组 nums \textit{nums} nums 的两端向中间遍历,按照绝对值从大到小的顺序依次遍历数组 nums \textit{nums} nums 的元素,计算每个元素的平方,反向填入新数组。

具体做法是,维护两个下标 index 1 \textit{index}_1 index1 index 2 \textit{index}_2 index2,初始时 index 1 \textit{index}_1 index1 指向数组 nums \textit{nums} nums 的首个元素, index 2 \textit{index}_2 index2 指向数组 nums \textit{nums} nums 的末尾元素。遍历过程中,比较 nums [ index 1 ] \textit{nums}[\textit{index}_1] nums[index1] nums [ index 2 ] \textit{nums}[\textit{index}_2] nums[index2] 这两个元素的绝对值:

  • 如果 nums [ index 1 ] \textit{nums}[\textit{index}_1] nums[index1] 的绝对值大于 nums [ index 2 ] \textit{nums}[\textit{index}_2] nums[index2] 的绝对值,则将 nums [ index 1 ] \textit{nums}[\textit{index}_1] nums[index1] 的平方填入新数组,将 index 1 \textit{index}_1 index1 1 1 1

  • 如果 nums [ index 1 ] \textit{nums}[\textit{index}_1] nums[index1] 的绝对值小于等于 nums [ index 2 ] \textit{nums}[\textit{index}_2] nums[index2] 的绝对值,则将 nums [ index 2 ] \textit{nums}[\textit{index}_2] nums[index2] 的平方填入新数组,将 index 2 \textit{index}_2 index2 1 1 1

由于遍历数组 nums \textit{nums} nums 的过程中,每次遍历的元素都是尚未遍历的元素中的绝对值最大的元素,因此遍历元素的顺序是绝对值非递增顺序,即元素的平方非递增顺序。将遍历的元素的平方反向填入新数组,新数组中的元素顺序为非递减顺序。

代码

class Solution {public int[] sortedSquares(int[] nums) {int length = nums.length;int[] squares = new int[length];int index1 = 0, index2 = length - 1;for (int i = length - 1; i >= 0; i--) {if (Math.abs(nums[index1]) > Math.abs(nums[index2])) {squares[i] = nums[index1] * nums[index1];index1++;} else {squares[i] = nums[index2] * nums[index2];index2--;}}return squares;}
}

复杂度分析

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 nums \textit{nums} nums 的长度。需要遍历数组 nums \textit{nums} nums 中的每个元素一次。

  • 空间复杂度: O ( 1 ) O(1) O(1)。注意返回值不计入空间复杂度。

http://www.ds6.com.cn/news/47758.html

相关文章:

  • 网站架构制作免费观看短视频的app软件推荐
  • 做交通锁具网站碟刹锁安徽搜索引擎优化seo
  • 动态素材网站网络广告推广服务
  • 南京网站建设网站制作软件测试培训
  • 在哪些网站做推广seo教程百度网盘
  • 企业网站整站智能营销方法
  • 建筑用模板是什么板材搜索引擎优化简称
  • 网站后台是怎么做的百度账号24小时人工电话
  • 网页素材html全国最好网络优化公司
  • 做网站ie10缓存西安新站网站推广优化
  • 网络推广方法有哪几种苏州网站seo优化
  • 政府网站设计cms网站模板
  • 哪些香港网站不能访问seo是什么级别
  • Spring做网站和什么优书网首页
  • 灵犀科技 网站建设软文大全800字
  • 网站备案需要什么材料北京关键词快速排名
  • 做网站需要技术百度推广客户端电脑版
  • golang网站开发台州网站建设
  • 网站备案号添加最新社会舆情信息
  • 重庆专业微信网站制作3d建模培训学校哪家好
  • 文化企业官方网站开发方案书餐饮管理培训课程
  • 大家做网站都会去哪找素材河南网站关键词优化代理
  • 河南网站seo设计网站排名优化首页
  • 网站建设开发步骤seo培训优化课程
  • wordpress错误怎么解决河北关键词seo排名
  • 小程序模板消息 非同一主体上海百度推广排名优化
  • 小米果怎么做视频网站电话营销
  • 做网站有地区差异吗市场调研的方法有哪些
  • 自助建站基础工作主要包括()广告代运营
  • 网站商城建设实训心得5g站长工具seo综合查询