当前位置: 首页 > news >正文

深圳网站建设知名 乐云践新中国市场营销网

深圳网站建设知名 乐云践新,中国市场营销网,wordpress tint主题,他人委托我做网站文章目录 optuna使用1.导入相关包2.定义模型可选参数3.定义训练代码和评估代码4.定义目标函数5.运行程序6.可视化7.超参数的重要性8.查看相关信息9.可视化的一个完整示例10.lightgbm实验 optuna使用 1.导入相关包 import torch import torch.nn as nn import torch.nn.functi…

文章目录

  • optuna使用
    • 1.导入相关包
    • 2.定义模型可选参数
    • 3.定义训练代码和评估代码
    • 4.定义目标函数
    • 5.运行程序
    • 6.可视化
    • 7.超参数的重要性
    • 8.查看相关信息
    • 9.可视化的一个完整示例
    • 10.lightgbm实验

optuna使用

1.导入相关包

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from fvcore.nn import FlopCountAnalysisimport optunaDEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
DIR = ".."
BATCHSIZE = 128
N_TRAIN_EXAMPLES = BATCHSIZE * 30   # 128 * 30个训练
N_VALID_EXAMPLES = BATCHSIZE * 10   # 128 * 10个预测

2.定义模型可选参数

optuna支持很多种搜索方式:
(1)trial.suggest_categorical(‘optimizer’, [‘MomentumSGD’, ‘Adam’]):表示从SGD和adam里选一个使用;
(2)trial.suggest_int(‘num_layers’, 1, 3):从1~3范围内的int里选;
(3)trial.suggest_uniform(‘dropout_rate’, 0.0, 1.0):从0~1内的uniform分布里选;
(4)trial.suggest_loguniform(‘learning_rate’, 1e-5, 1e-2):从1e-5~1e-2的log uniform分布里选;
(5)trial.suggest_discrete_uniform(‘drop_path_rate’, 0.0, 1.0, 0.1):从0~1且step为0.1的离散uniform分布里选;

def define_model(trial):n_layers = trial.suggest_int("n_layers", 1, 3) # 从[1,3]范围里面选一个layers = []in_features = 28 * 28for i in range(n_layers):out_features = trial.suggest_int("n_units_l{}".format(i), 4, 128)layers.append(nn.Linear(in_features, out_features))layers.append(nn.ReLU())p = trial.suggest_float("dropout_{}".format(i), 0.2, 0.5)layers.append(nn.Dropout(p))in_features = out_featureslayers.append(nn.Linear(in_features, 10))layers.append(nn.LogSoftmax(dim=1))return nn.Sequential(*layers)

3.定义训练代码和评估代码

# Defines training and evaluation.
def train_model(model, optimizer, train_loader):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.view(-1, 28 * 28).to(DEVICE), target.to(DEVICE)optimizer.zero_grad()F.nll_loss(model(data), target).backward()optimizer.step()def eval_model(model, valid_loader):model.eval()correct = 0with torch.no_grad():for batch_idx, (data, target) in enumerate(valid_loader):data, target = data.view(-1, 28 * 28).to(DEVICE), target.to(DEVICE)pred = model(data).argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()accuracy = correct / N_VALID_EXAMPLESflops = FlopCountAnalysis(model, inputs=(torch.randn(1, 28 * 28).to(DEVICE),)).total()return flops, accuracy

4.定义目标函数

def objective(trial):train_dataset = torchvision.datasets.FashionMNIST(DIR, train=True, download=True, transform=torchvision.transforms.ToTensor())train_loader = torch.utils.data.DataLoader(torch.utils.data.Subset(train_dataset, list(range(N_TRAIN_EXAMPLES))),batch_size=BATCHSIZE,shuffle=True,)val_dataset = torchvision.datasets.FashionMNIST(DIR, train=False, transform=torchvision.transforms.ToTensor())val_loader = torch.utils.data.DataLoader(torch.utils.data.Subset(val_dataset, list(range(N_VALID_EXAMPLES))),batch_size=BATCHSIZE,shuffle=True,)model = define_model(trial).to(DEVICE)optimizer = torch.optim.Adam(model.parameters(), trial.suggest_float("lr", 1e-5, 1e-1, log=True))for epoch in range(10):train_model(model, optimizer, train_loader)flops, accuracy = eval_model(model, val_loader)return flops, accuracy

5.运行程序

运行30次实验,每次实验返回 flops,accuracy

study = optuna.create_study(directions=["minimize", "maximize"]) # flops 最小化, accuracy 最大化
study.optimize(objective, n_trials=30, timeout=300)print("Number of finished trials: ", len(study.trials))

6.可视化

flops, accuracy 二维图
optuna.visualization.plot_pareto_front(study, target_names=[“FLOPS”, “accuracy”])

在这里插入图片描述

7.超参数的重要性

对于flops
optuna.visualization.plot_param_importances(
study, target=lambda t: t.values[0], target_name=“flops”
)

对于accuracy
optuna.visualization.plot_param_importances(
study, target=lambda t: t.values[1], target_name=“accuracy”
)

在这里插入图片描述

8.查看相关信息

# https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/002_multi_objective.html
# 利用pytorch mnist 识别
# 设置了一些超参数,lr, layer number, feature_number等
# 然后目标是 flops 和 accurary# 最后是可视化:
# 显示试验的一些结果:
# optuna.visualization.plot_pareto_front(study, target_names=["FLOPS", "accuracy"])
# 左上角是最好的# 显示重要性:
# optuna.visualization.plot_param_importances(
#     study, target=lambda t: t.values[0], target_name="flops"
# )
# optuna.visualization.plot_param_importances(
#     study, target=lambda t: t.values[1], target_name="accuracy"
# )# trials的属性:
print(f"Number of trials on the Pareto front: {len(study.best_trials)}")trial_with_highest_accuracy = max(study.best_trials, key=lambda t: t.values[1])
print(f"Trial with highest accuracy: ")
print(f"\tnumber: {trial_with_highest_accuracy.number}")
print(f"\tparams: {trial_with_highest_accuracy.params}")
print(f"\tvalues: {trial_with_highest_accuracy.values}")

9.可视化的一个完整示例

# You can use Matplotlib instead of Plotly for visualization by simply replacing `optuna.visualization` with
# `optuna.visualization.matplotlib` in the following examples.
from optuna.visualization import plot_contour
from optuna.visualization import plot_edf
from optuna.visualization import plot_intermediate_values
from optuna.visualization import plot_optimization_history
from optuna.visualization import plot_parallel_coordinate
from optuna.visualization import plot_param_importances
from optuna.visualization import plot_rank
from optuna.visualization import plot_slice
from optuna.visualization import plot_timelinedef objective(trial):train_dataset = torchvision.datasets.FashionMNIST(DIR, train=True, download=True, transform=torchvision.transforms.ToTensor())train_loader = torch.utils.data.DataLoader(torch.utils.data.Subset(train_dataset, list(range(N_TRAIN_EXAMPLES))),batch_size=BATCHSIZE,shuffle=True,)val_dataset = torchvision.datasets.FashionMNIST(DIR, train=False, transform=torchvision.transforms.ToTensor())val_loader = torch.utils.data.DataLoader(torch.utils.data.Subset(val_dataset, list(range(N_VALID_EXAMPLES))),batch_size=BATCHSIZE,shuffle=True,)model = define_model(trial).to(DEVICE)optimizer = torch.optim.Adam(model.parameters(), trial.suggest_float("lr", 1e-5, 1e-1, log=True))for epoch in range(10):train_model(model, optimizer, train_loader)val_accuracy = eval_model(model, val_loader)trial.report(val_accuracy, epoch)if trial.should_prune():raise optuna.exceptions.TrialPruned()return val_accuracystudy = optuna.create_study(direction="maximize",sampler=optuna.samplers.TPESampler(seed=SEED),pruner=optuna.pruners.MedianPruner(),
)
study.optimize(objective, n_trials=30, timeout=300)

运行之后可视化:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

10.lightgbm实验

"""
Optuna example that optimizes a classifier configuration for cancer dataset using LightGBM.In this example, we optimize the validation accuracy of cancer detection using LightGBM.
We optimize both the choice of booster model and their hyperparameters."""import numpy as np
import optunaimport lightgbm as lgb
import sklearn.datasets
import sklearn.metrics
from sklearn.model_selection import train_test_split# FYI: Objective functions can take additional arguments
# (https://optuna.readthedocs.io/en/stable/faq.html#objective-func-additional-args).
def objective(trial):data, target = sklearn.datasets.load_breast_cancer(return_X_y=True)train_x, valid_x, train_y, valid_y = train_test_split(data, target, test_size=0.25)dtrain = lgb.Dataset(train_x, label=train_y)param = {"objective": "binary","metric": "binary_logloss","verbosity": -1,"boosting_type": "gbdt","lambda_l1": trial.suggest_float("lambda_l1", 1e-8, 10.0, log=True),"lambda_l2": trial.suggest_float("lambda_l2", 1e-8, 10.0, log=True),"num_leaves": trial.suggest_int("num_leaves", 2, 256),"feature_fraction": trial.suggest_float("feature_fraction", 0.4, 1.0),"bagging_fraction": trial.suggest_float("bagging_fraction", 0.4, 1.0),"bagging_freq": trial.suggest_int("bagging_freq", 1, 7),"min_child_samples": trial.suggest_int("min_child_samples", 5, 100),}gbm = lgb.train(param, dtrain)preds = gbm.predict(valid_x)pred_labels = np.rint(preds)accuracy = sklearn.metrics.accuracy_score(valid_y, pred_labels)return accuracyif __name__ == "__main__":study = optuna.create_study(direction="maximize")study.optimize(objective, n_trials=100)print("Number of finished trials: {}".format(len(study.trials)))print("Best trial:")trial = study.best_trialprint("  Value: {}".format(trial.value))print("  Params: ")for key, value in trial.params.items():print("    {}: {}".format(key, value))

运行结果:
在这里插入图片描述

https://github.com/microsoft/LightGBM/tree/master/examples

https://blog.csdn.net/yang1015661763/article/details/131364826

http://www.ds6.com.cn/news/58367.html

相关文章:

  • 手机网站什么技术开发推广营销方案
  • 手机上自己做网站做网站seo怎么赚钱
  • 注册免费的网站有吗广告做到百度第一页
  • 大连做网站电话2345中国最好的网址站
  • 建设推广站网站方案软文推广服务
  • 网站上的定位怎么做广点通广告平台
  • 国外做耳机贸易的平台网站免费的舆情网站
  • 饭店品牌建设网站关键词在线优化
  • 网站建设有名的公司域名检测
  • dreamweaver网站设计模板排名优化工具
  • 网站设计需要什么软件北京网站建设公司
  • 泰安网站营销推广千博企业网站管理系统
  • 工程报价seo博客教程
  • ai智能生成图片免费网站seo排名培训
  • 做兼职拍照片传网站seo外链工具
  • 网红营销重庆seo技术教程博客
  • 包装盒在线设计网站seo网站查询
  • 快3网站制作 优帮云html网页设计模板
  • 平湖手机网站建设windows优化软件
  • 做推广哪些网站好seo网站排名软件
  • 微信导入wordpress东莞seo排名收费
  • 做购物网站 推广seogw
  • 门户网站建设注意事项日照网络推广公司
  • 蒙古文网站建设情况晋中网络推广
  • 中国纪检监察报电子版阅读温州seo网站推广
  • 民房做酒店出租网站app网络广告推广方案
  • 网站设计做哪些准备搜索引擎论文3000字
  • wordpress菜单种类seo 优化顾问
  • 广西网站建设.com软件开发培训多少钱
  • foxmail企业邮箱入口seo网络营销推广