当前位置: 首页 > news >正文

中山做网站服务好代刷网站推广链接免费

中山做网站服务好,代刷网站推广链接免费,住房和城乡建设局,深圳龙岗是市区还是郊区可以使用二分查找法或牛顿迭代法来实现 LeetCode 问题 69. x 的平方根。下面是使用二分查找法和牛顿迭代法的 C 实现。 二分查找法 #include <iostream>class Solution { public:int mySqrt(int x) {if (x 0) return 0;int left 1, right x, ans 0;while (left <…

可以使用二分查找法或牛顿迭代法来实现 LeetCode 问题 69. x 的平方根。下面是使用二分查找法和牛顿迭代法的 C++ 实现。

二分查找法

#include <iostream>class Solution {
public:int mySqrt(int x) {if (x == 0) return 0;int left = 1, right = x, ans = 0;while (left <= right) {int mid = left + (right - left) / 2;if (mid <= x / mid) {ans = mid;left = mid + 1;} else {right = mid - 1;}}return ans;}
};int main() {Solution solution;int x = 8;std::cout << "The square root of " << x << " is " << solution.mySqrt(x) << std::endl;return 0;
}

牛顿迭代法

#include <iostream>class Solution {
public:int mySqrt(int x) {if (x == 0) return 0;double x0 = x;while (true) {double xi = 0.5 * (x0 + x / x0);if (abs(x0 - xi) < 1e-7) break;x0 = xi;}return static_cast<int>(x0);}
};int main() {Solution solution;int x = 8;std::cout << "The square root of " << x << " is " << solution.mySqrt(x) << std::endl;return 0;
}

解释

二分查找法
  1. 初始化:定义 left 为 1,rightx,并初始化 ans 为 0。
  2. 循环:当 left 小于等于 right 时,计算 mid 作为中间值。
  3. 判断:如果 mid 的平方小于等于 x,说明 mid 可能是平方根的一部分,更新 ansmid,并移动 leftmid + 1。否则,移动 rightmid - 1
  4. 返回:循环结束后,返回 ans
牛顿迭代法
  1. 初始化:定义 x0x
  2. 迭代:计算 xi,它是 x0x / x0 的平均值。如果 x0xi 的差异小于一个很小的值(如 1e-7),则停止迭代。
  3. 更新:将 x0 更新为 xi
  4. 返回:将 x0 转换为整数并返回。

这两种方法都能有效地计算 x 的平方根,并且二分查找法的时间复杂度为 O(log x),牛顿迭代法的时间复杂度为 O(log x)。你可以根据需要选择其中一种方法。

当然,使用图示和例子可以更直观地理解二分查找算法在计算平方根整数部分的过程。

例子:计算 10 的平方根的整数部分

我们以计算 10 的平方根为例,来展示整个过程。

步骤 1:初始化
  • left = 1
  • right = 10
  • ans = 0
步骤 2:开始二分查找
  1. 第一次迭代

    • 计算中点 mid = left + (right - left) / 2 = 1 + (10 - 1) / 2 = 5
    • 检查 mid * midx 的关系:5 * 5 = 25,25 > 10,因此更新 rightmid - 1,即 right = 4
    • 图示:
      搜索区间: [1, 10]
      mid = 5, 5*5 > 10, 更新right = 4
      
  2. 第二次迭代

    • 计算中点 mid = left + (right - left) / 2 = 1 + (4 - 1) / 2 = 2
    • 检查 mid * midx 的关系:2 * 2 = 4,4 < 10,因此更新 ansmid,并更新 leftmid + 1,即 left = 3
    • 图示:
      搜索区间: [1, 4]
      mid = 2, 2*2 < 10, 更新left = 3, ans = 2
      
  3. 第三次迭代

    • 计算中点 mid = left + (right - left) / 2 = 3 + (4 - 3) / 2 = 3
    • 检查 mid * midx 的关系:3 * 3 = 9,9 < 10,因此更新 ansmid,并更新 leftmid + 1,即 left = 4
    • 图示:
      搜索区间: [3, 4]
      mid = 3, 3*3 < 10, 更新left = 4, ans = 3
      
  4. 第四次迭代

    • 计算中点 mid = left + (right - left) / 2 = 4 + (4 - 4) / 2 = 4
    • 检查 mid * midx 的关系:4 * 4 = 16,16 > 10,因此更新 rightmid - 1,即 right = 3
    • 图示:
      搜索区间: [4, 4]
      mid = 4, 4*4 > 10, 更新right = 3
      
结束循环

left > right 时,退出循环,此时 ans 保存的就是最大的满足条件的整数。最终结果为 ans = 3,所以 10 的平方根的整数部分是 3。

代码对应的流程

  1. 初始化 leftrightans
  2. 在每次迭代中计算 mid 并比较 mid * midx
    • 如果 mid * mid 小于等于 x,则更新 ans 并右移 left
    • 如果 mid * mid 大于 x,则左移 right
  3. 循环结束后,返回 ans

图示

初始区间: [1, 10]第一次迭代:
mid = 5, 5*5 > 10, 更新right = 4
搜索区间变为: [1, 4]第二次迭代:
mid = 2, 2*2 < 10, 更新left = 3, ans = 2
搜索区间变为: [3, 4]第三次迭代:
mid = 3, 3*3 < 10, 更新left = 4, ans = 3
搜索区间变为: [4, 4]第四次迭代:
mid = 4, 4*4 > 10, 更新right = 3
搜索区间变为: [4, 3]循环结束,返回 ans = 3

这样,通过二分查找,我们成功找到并返回了 10 的平方根的整数部分 3。

http://www.ds6.com.cn/news/69934.html

相关文章:

  • 济南外贸网站建设北京网络营销外包公司哪家好
  • 网站端和移动端分开建设域名一样么长春刚刚最新消息今天
  • 门户网站开发公司平台seo外链工具有用吗
  • p2p金融网站开发方案百度关键词优化方法
  • wordpress数据库引擎鞍山seo优化
  • 南宁做网站推广的公司客户关系管理系统
  • 泸州公司做网站做网络推广为什么会被抓
  • 网站设计的基本步骤和方法谷歌搜索优化
  • 岳阳网站建设免费推广的途径与原因
  • 个旧做网站哪家公司好百度企业推广怎么收费
  • 网站做pc相城seo网站优化软件
  • 长春专业网站建设模板代理表白网页制作免费网站制作
  • python 和php网站开发营销手段有哪些
  • 上海高端网站开发营销技巧和营销方法视频
  • 在线做公章网站100%能上热门的文案
  • 自己电脑做网站 带宽济南做seo排名
  • 茶叶响应式网站广告联盟接单平台
  • 个人建站平台产品推广方案要包含哪些内容
  • 蒲城网站建设wzjseo2021网络营销成功案例
  • 在线教育网站模板站长工具忘忧草
  • 优秀作文大全网站seo学堂
  • 做时时彩吧的网站郑州网站建设方案优化
  • 企业销售网站整站seo排名要多少钱
  • 做网站图片要求黄页推广平台有哪些
  • 淮南网站建设好长沙优化排名推广
  • notepad做网站开网站怎么开
  • 360的网站怎么做个人网站备案
  • 下载一个网站应用商店搜索优化
  • 请问婚庆网站建设该怎么做呢成都网络优化公司有哪些
  • 初级网页设计招聘网站seo批量查询工具