当前位置: 首页 > news >正文

p2p免费网站建设最新国内新闻10条

p2p免费网站建设,最新国内新闻10条,建设工程合同印花税计税依据,泉州网站建设 首选猴子网络5.4 转换数据 5.4.1 哑变量处理类别型数据5.4.2 离散化连续型数据1、等宽法2、等频法3、聚类分析法 数据集 E:/Input/ptest.csv 5.4.1 哑变量处理类别型数据 数据分析模型中有相当一部分的算法模型都要求输入的特征为数值型,但实际数据中特征的类型不一定只有数值…

5.4 转换数据

  • 5.4.1 哑变量处理类别型数据
  • 5.4.2 离散化连续型数据
    • 1、等宽法
    • 2、等频法
    • 3、聚类分析法

数据集 E:/Input/ptest.csv
在这里插入图片描述

5.4.1 哑变量处理类别型数据

  数据分析模型中有相当一部分的算法模型都要求输入的特征为数值型,但实际数据中特征的类型不一定只有数值型,还会存在相当一部分的类别型,这部分的特征需要经过哑变量处理才可以放入模型之中。哑变量处理的原理示例如图:
在这里插入图片描述
  Python中可以利用pandas库中的get_dummies函数对类别型特征进行哑变量处理

pandas.get_dummies(data, prefix=None, prefix_sep=‘_’, dummy_na=False, columns=None, sparse=False, drop_first=False)

在这里插入图片描述

import pandas as pd
import numpy as np
df = pd.read_csv('E:/Input/ptest.csv', encoding='gbk')
data = df['name'].head(5)
print(data)
print(pd.get_dummies(data))

在这里插入图片描述
  从结果中可以发现,对于一个类别型特征,若其取值有m个,则经过哑变量处理后就变成了m个二元特征,并且这些特征互斥,每次只有一个激活,这使得数据变得稀疏。
  对类别型特征进行哑变量处理主要解决了部分算法模型无法处理类别型数据的问题,这在一定程度上起到了扩充特征的作用。由于数据变成了稀疏矩阵的形式,因此也加速了算法模型的运算速度。

5.4.2 离散化连续型数据

  某些模型算法,特别是某些分类算法如ID3决策树算法和Apriori算法等,要求数据是离散的,此时就需要将连续型特征(数值型)变换成离散型特征(类别型)。
  连续特征的离散化就是在数据的取值范围内设定若干个离散的划分点,将取值范围划分为一些离散化的区间,最后用不同的符号或整数值代表落在每个子区间中的数据值。
  因此离散化涉及两个子任务,即确定分类数以及如何将连续型数据映射到这些类别型数据上。其原理如图:
在这里插入图片描述
  常用的离散化方法主要有3种:等宽法、等频法和聚类分析法(一维)。

1、等宽法

  将数据的值域分成具有相同宽度的区间,区间的个数由数据本身的特点决定或者用户指定,与制作频率分布表类似。pandas提供了cut函数,可以进行连续型数据的等宽离散化,其基础语法格式如下。

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)

在这里插入图片描述

import pandas as pd
df = pd.read_csv('E:/Input/ptest.csv', encoding='gbk')
data = df['amounts']
# 1、等宽法
price = pd.cut(data, 5)
print(price.value_counts())

在这里插入图片描述
  使用等宽法离散化的缺陷为:等宽法离散化对数据分布具有较高要求,若数据分布不均匀,那么各个类的数目也会变得非常不均匀,有些区间包含许多数据,而另外一些区间的数据极少,这会严重损坏所建立的模型。

2、等频法

  cut函数虽然不能够直接实现等频离散化,但是可以通过定义将相同数量的记录放进每个区间。

import pandas as pd
import numpy as np
df = pd.read_csv('E:/Input/ptest.csv', encoding='gbk')
data = df['amounts']
# 2、等频法
# 自定义等频法离散化函数
def SameRateCut(data, k):w = data.quantile(np.arange(0,1+1.0/k, 1.0/k))data = pd.cut(data,w)return data
price = SameRateCut(data, 5)
print(price.value_counts())

在这里插入图片描述
  等频法离散化的方法相比较于等宽法离散化而言,避免了类分布不均匀的问题,但同时却也有可能将数值非常接近的两个值分到不同的区间以满足每个区间中固定的数据个数。

3、聚类分析法

  一维聚类的方法包括两个步骤:
   (1)将连续型数据用聚类算法(如K-Means算法等)进行聚类。
   (2)处理聚类得到的簇,将合并到一个簇的连续型数据做同一标记。
  聚类分析的离散化方法需要用户指定簇的个数,用来决定产生的区间数。

import pandas as pd
df = pd.read_csv('E:/Input/ptest.csv', encoding='gbk')# 3、基于聚类分析的离散化
# 自定义数据K-Means聚类离散化函数
def KmeansCut(data, k):from sklearn.cluster import KMeans  # 引入K-Means# 建立模型kmodel = KMeans(n_clusters=k)kmodel.fit(data.values.reshape((len(data), 1)))# 输出聚类中心并排序c = pd.DataFrame(kmodel.cluster_centers_).sort_values(0)w = c.rolling(2).mean().iloc[1:]  # 相邻两项求中点,作为边界点w = [0] + list(w[0]) + [data.max()]  # 把首末边界点加上data = pd.cut(data,w)  #return data
data = df['amounts']
price = KmeansCut(data, 5)
print(price.value_counts())

在这里插入图片描述
  k-Means聚类分析的离散化方法可以很好地根据现有特征的数据分布状况进行聚类,但是由于k-Means算法本身的缺陷,用该方法进行离散化时依旧需要指定离散化后类别的数目。此时需要配合聚类算法评价方法,找出最优的聚类簇数目。

http://www.ds6.com.cn/news/71986.html

相关文章:

  • 网站上怎么引用视频怎样宣传自己的品牌
  • 做一个网址多少钱安徽seo报价
  • 视频娱乐模版网站购买搜索竞价排名
  • 领动做的企业网站怎么样域名备案查询官网
  • 怎么样看网站用什么程序做的上海做关键词推广企业
  • 私人网站如何做竞价百度提交网站收录查询
  • 江西建筑工程网武汉seo诊断
  • 广州网站定制开发广州权威发布
  • 外贸网站怎么做网页设计作品集
  • 网站开发建设费用明细网络营销工资一般多少
  • 太仓苏州网站建设热门国际新闻
  • 卓光网站建设域名解析网站
  • 企业网站网页设计的步骤目前引流最好的平台
  • 网站推广的优缺点建个网站需要多少钱?
  • 网站开发为什么不用cgi了百度热议怎么上首页
  • 武汉光谷网站建设公司网站优化 秦皇岛
  • 惠州网站建设哪里有网址最新连接查询
  • 青海旅游的网站建设广州网站优化
  • 安康做网站的公司电话热点时事新闻
  • 网站排名软件利搜怎么样可以推广发广告的app
  • 长春建站模板展示网站开发流程
  • 最新获取网站访客qq接口上海谷歌seo推广公司
  • 芜湖营销网站建设企业培训课程名称大全
  • 艺术名画网站怎么建设广州seo优化排名公司
  • Java做网站的学习路线青岛网站运营
  • wordpress局域网外网访问不了河南做网站优化
  • 不懂代码如何做网站seo外包公司兴田德润
  • 那些网站是做金融行业今日热榜官网
  • 贵阳网站建设是什么意思seo赚钱方法大揭秘
  • 怎么自己建立一个网站建站abc官方网站