当前位置: 首页 > news >正文

建设厅投诉网站首页宣传推广图片

建设厅投诉网站首页,宣传推广图片,旅游网站源码,寻找集团网站建设pandas在处理Excel/DBs中读取出来,处理为DataFrame格式的数据时,处理方式和性能上有很大差异,下面是一些高效,方便处理数据的方法。 map/apply/applymaptransformagg遍历求和/求平均shift/diff透视表切片,索引&#x…

pandas在处理Excel/DBs中读取出来,处理为DataFrame格式的数据时,处理方式和性能上有很大差异,下面是一些高效,方便处理数据的方法。

  1. map/apply/applymap
  2. transform
  3. agg
  4. 遍历
  5. 求和/求平均
  6. shift/diff
  7. 透视表
  8. 切片,索引,根据字段值取数据

数据准备:

import pandas as pd
from datetime import date
import numpy as np
begin_date = date(2023, 3, 1)
end_date = date(2023, 3, 7)
time_list = [d_date.date() for d_date in pd.date_range(begin_date, end_date)]
print(time_list)
# 小黄,小红,小绿三个员工,3月1号到7号之间的销售额数据
df2 = pd.DataFrame({'name': ['小黄', '小黄', '小黄', '小黄', '小黄', '小黄', '小黄', '小红', '小红', '小红', '小红', '小红', '小红', '小红', '小绿', '小绿', '小绿', '小绿', '小绿', '小绿'], 'd_date': [*time_list, *time_list, *time_list[:6]], 'value': np.random.randint(500, 5000, size=20)})
  1. map/apply/applymap的用法介绍
# 计算每个员工,在当天的总销售额的占比
sell_money_sum_s = df2.groupby('d_date')['value'].sum()
df3 = sell_money_sum_s.reset_index().rename(columns={'value': 'sum'})

在这里插入图片描述

df4 = pd.merge(df2, df3, on='d_date', how='left')

在这里插入图片描述

df4['ratio'] = df4['value'] / df4['sum']

在这里插入图片描述

# Series.map:针对列元素进行操作,处理完之后还是返回一个Series
# 将销售额占比格式化成百分数并保留两位小数
df4['ratio_percent'] = df4['ratio'].map(lambda x: '%.2f%%' % (x * 100))

在这里插入图片描述

# apply:对DataFrame的多列进行操作
# 对每个元素进行以万元为单位进行展示
df4[['value(万元)', 'sum(万元)']] = df4[['value', 'sum']].apply(lambda x: x / 10000)

在这里插入图片描述

# 将销售数据(万元),按列汇总,使用参数axis=0
df4[['value(万元)', 'sum(万元)']].apply(lambda x: x.sum(), axis=0)

在这里插入图片描述

# 将销售数据(万元),按行汇总,使用参数axis=1
df4[['value(万元)', 'sum(万元)']].apply(lambda x: x.sum(), axis=1)

在这里插入图片描述

# applymap函数是df的函数,对比于Series.map,针对处理数据集中每一个元素
df4.applymap(lambda x: f'___{x}___')

在这里插入图片描述
2. transform
通常如果像上述那样,计算每日销售额占比数据,需要先分组求和,再通过一些字段,比如d_date,将两组数据merge,通过列计算,得到占比。但是transform有更简洁的操作。

df6 = df2.copy()

在这里插入图片描述

df6['sum'] = df6.groupby('d_date')['value'].transform('sum')

在这里插入图片描述

df6['ratio'] = df6['value'] / df6['sum']

可以得到每个人,每天销售额的占比情况
在这里插入图片描述
3. agg
在指定轴上对一列或多列进行聚合

df7 = df2.copy()
# agg函数比较常见的使用场景,分组,对每组数据的聚合(求和/最大值/最小值/均值等)运算
df7.groupby('d_date').agg({'name': 'last', 'd_date': 'last', 'value': 'max'})

在这里插入图片描述

# agg同样可以对一列或者多列进行求和
df7['value'].agg('sum', axis=0)

在这里插入图片描述

# 如果我们想一次求出每天的销售额的最大值和最小值
df7.groupby('d_date').agg({'value': ['max', 'min']}).reset_index()

在这里插入图片描述
4. 遍历
iterrows(): 将DataFrame迭代为(insex, Series)对。
itertuples(): 将DataFrame迭代为元祖。
iteritems(): 将DataFrame迭代为(列名, Series)对
5. 求和/求平均
数据准备:

df_sum_mean = df2.copy()
# 分组求和,只保留分组字段和求和数据
df_sum_mean.groupby('d_date')['value'].sum().reset_index()

在这里插入图片描述

# 分组求和,保留原始记录的条数
df_sum_mean['sum'] = df_sum_mean.groupby('d_date')['value'].transform('sum')
df_sum_mean

在这里插入图片描述

# 对多列进行聚合操作
df_sum_mean.groupby('d_date').agg({'name': 'last', 'value': 'max', 'sum': 'last'}).reset_index()

在这里插入图片描述
6. shift/diff
shift:可以使用shift()方法对DataFrame对象的数据进行位置的前滞、后滞移动。
语法:

DataFrame.shift(periods=1, freq=None, axis=0)

periods可以理解为移动幅度的次数,shift默认一次移动1个单位,也默认移动1次(periods默认为1),则移动的长度为1 *
periods。 periods可以是正数,也可以是负数。负数表示前滞,正数表示后滞。
freq是一个可选参数,默认为None,可以设为一个timedelta对象。适用于索引为时间序列数据时。
freq为None时,移动的是其他数据的值,即移动periods*1个单位长度。
freq部位None时,移动的是时间序列索引的值,移动的长度为periods * freq个单位长度。
axis默认为0,表示对列操作。如果为行则表示对行操作。 移动滞后没有对应值的默认为NaN。

diff:dataframe.diff()用于查找对象在给定axis上的第一个离散差值。我们可以提供一个周期值来转移,以形成差异。
语法:

DataFrame.diff(periods=1, axis=0)

periods:形成差异的时期,要进行转移。
axis:在行(0)或列(1)上取差。

数据准备:

df_shift = df2.copy()
df_sell_amount = df_shift.groupby('d_date')['value'].sum().reset_index()
df_sell_amount.rename(columns={'value': 'amount'}, inplace=True)
# 查看每日销售额相较于前一天的变化幅度
df_sell_amount['amplification'] = df_sell_amount['amount'] / df_sell_amount.shift()['amount'] - 1

在这里插入图片描述

# 更简单的方法
df_sell_amount['amount'].pct_change()

在这里插入图片描述

透视表
切片,索引,根据字段值取数据

http://www.ds6.com.cn/news/82480.html

相关文章:

  • 做php网站需要什么软件开发seo优化技术教程
  • 网站怎么做百度优化怎么建立企业网站
  • 中国兰州网招聘seo关键词排名优化系统源码
  • 买域名后怎么做网站百度百科入口
  • 建筑设计网站app杭州小程序建设公司
  • 本校网站建设成都新一轮疫情
  • 武汉 网站 合作伙伴百度收录的网站多久更新一次
  • 企业查询电话号码上海百度推广优化排名
  • 生成链接的网站徐州网站设计
  • 乐清网站建设百度竞价是什么工作
  • 网站建设平台推荐网站编辑怎么做
  • 网站多语言版本域名是什么
  • 成都做网站做的好的公司百度指数api
  • 做网站用的编程语言免费网站注册平台
  • 关于网站建设费用的报告app推广是什么工作
  • 网站维护 设计seo专员很难吗
  • 番禺建设网站公司排名网店seo
  • 帝国网站开发怎样利用互联网进行网络推广
  • 域名查询app赣州seo公司
  • 做详情图的网站seo关键词排名优化手机
  • 南沙做网站要多少钱指数函数求导公式
  • 微信公众平台开发者中心关键词优化公司前十排名
  • 做pc端网站基本流程seo网站排名优化价格
  • 微盟企业微信助手百度seo运营工作内容
  • 京东网站开发技术网络推广怎么做才有效
  • 万江区做网站百度网址大全简单版
  • 荣成市信用建设官方网站app开发公司哪家好
  • 郑州做网站设计的公司网络营销是什么工作
  • 唐山做网站哪家公司好怎么制作网站详细流程
  • dw软件做的网站怎么发到网上电商网站设计方案