当前位置: 首页 > news >正文

做海报设计的网站百度推广怎么样

做海报设计的网站,百度推广怎么样,企业信息系统网官网,网络营销现状报告K近邻分类器(KNN)(4-2) K近邻分类器(K-Nearest Neighbor,简称KNN)是一种基本的机器学习分类算法。它的工作原理是:在特征空间中,如果一个样本在特征空间中的K个最相邻的样…

K近邻分类器(KNN)(4-2)

K近邻分类器(K-Nearest Neighbor,简称KNN)是一种基本的机器学习分类算法。它的工作原理是:在特征空间中,如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别。

具体来说,KNN算法首先计算待分类样本与其他所有样本的距离,然后按照距离的递增关系进行排序,选取距离最小的K个样本,最后根据这K个样本的类别通过多数投票等方式进行预测。当K=1时,KNN算法又称为最近邻算法。

KNN算法的优点包括:

  1. 思想简单,易于理解和实现。
  2. 对数据分布没有假设,完全基于距离度量进行分类。
  3. 适用范围广,可以用于多分类问题。

然而,KNN算法也存在一些缺点:

  1. 对距离度量函数和K值的选择敏感,不同的距离度量函数和K值可能会产生不同的分类结果。
  2. 计算量大,需要计算待分类样本与所有训练样本的距离。
  3. 内存需求大,需要存储所有的训练样本。
  4. 可解释性不强,无法给出决策边界等直观的解释。

KNN算法的应用场景非常广泛,包括但不限于:

  1. 垃圾邮件识别:可以将邮件分为“垃圾邮件”或“正常邮件”两类。
  2. 图像内容识别:由于图像的内容种类可能很多,因此这是一个多类分类问题。
  3. 文本情感分析:既可以作为二分类问题(褒贬两种情感),也可以作为多类分类问题(如十分消极、消极、积极、十分积极等)。

此外,KNN算法还可以用于其他机器学习任务,如手写数字识别、鸢尾花分类等。在这些任务中,KNN算法都表现出了较好的性能。

  1. 数据实例
IDAgeExperienceIncomeZIP CodeFamilyCCAvgEducationMortgagePersonal LoanSecurities AccountCD AccountOnlineCreditCard
1251499110741.61001000
24519349008931.51001000
339151194720111000000
43591009411212.72000000
53584591330412000001
63713299212140.4215500010
75327729171121.52000010
85024229394310.33000001
93510819008930.6210400010
103491809302318.93010000
1165391059471042.43000000
12295459027730.12000010
1348231149310623.83001000
145932409492042.52000010
15674111291741121001000
166030229505411.53000011
1738141309501044.7313410000
184218819430542.41000000
1946211939160428.13010000
205528219472010.52001001
215631259401540.9211100010
2257276390095323000010
23295629027711.2126000010
244418439132020.7116301000
2536111529552123.9115900001
264319299430530.519700010
274016839506440.23000000
2846201589006412.41000011
295630489453912.23000011
3038131199410413.32010111
315935359310611.2312200010
3240162994117122000010
335328419480120.6319300000
34306189133030.93000000
35315509403541.83000010
364824819264730.71000000
3759351219472012.91000001
385125719581411.4319800000
39421814194114353011110
403813809411540.7328500010
415732849267231.63001000
42349609412232.31000000
433271329001941.1241210010
443915459561610.71000010
4546201049406515.71000011
465731529472042.51000001
473914439501430.7215300010
4837121949138040.2321111111
495626819574724.53000001
504016499237311.81000001
5132889209340.72001010
5261371319472012.91000010
53306729400510.1120700000
5450261909024532.1324010010
55295449581910.23000010
56411713994022281000010
575530299400530.12001110
5856311319561621.23010000
59282939406520.21000000
603151889132024.5145500000
614924399040431.72001010
6247211259340715.7111201000
6342182290089111000000
6442173294523402000010
6547231059002423.31000000
6659351319136013.81000011
6762361059567022.8133600000
685323459512342313201000
694721609340732.11000011
705329209004540.21000010
7142181159133513.51000001
7253296993907412000010
73442013092007151000001
7441168594606143000011
752831359461123.31000001
763171359490143.82010111

使用第1题中的Universal Bank数据集。

注意:数据集中的编号(ID)和邮政编码(ZIP CODE)特征因为在分类模型中无意义,所以在数据预处理阶段将它们删除。

  1. 使用KNN对数据进行分类
  1. 使用留出法划分数据集,训练集:测试集为7:3。
# 使用留出法划分数据集,训练集:测试集为7:3
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
  1. 使用KNN对训练集进行训练
# 使用KNN算法对训练集进行训练,最近邻的数量K设置为5
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_train, y_train)

最近邻的数量K设置为5。

  1. 使用训练好的模型对测试集进行预测并输出预测结果模型准确度
# 使用训练好的模型对测试集进行预测
y_pred = model.predict(X_test)# 输出预测结果
for item in y_pred:print(item, end='\n')  # 每项后面都换行,这样就不会合并在一起
print("预测结果:")
print(y_pred)# 输出模型准确度
accuracy = accuracy_score(y_test, y_pred)
print("模型准确度:", accuracy)

 完整代码:

# 导入所需的库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import pprint# 禁用输出省略
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', None)# 读取数据集
data = pd.read_csv("universalbank.csv")# 数据预处理:删除无意义特征
data = data.drop(columns=['ID', 'ZIP Code'])# 划分特征和标签
X = data.drop(columns=['Personal Loan'])
y = data['Personal Loan']# 使用留出法划分数据集,训练集:测试集为7:3
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 使用KNN算法对训练集进行训练,最近邻的数量K设置为5
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_train, y_train)# 使用训练好的模型对测试集进行预测
y_pred = model.predict(X_test)# 输出预测结果
for item in y_pred:print(item, end='\n')  # 每项后面都换行,这样就不会合并在一起
print("预测结果:")
print(y_pred)# 输出模型准确度
accuracy = accuracy_score(y_test, y_pred)
print("模型准确度:", accuracy)

 

http://www.ds6.com.cn/news/91132.html

相关文章:

  • 钟表玻璃东莞网站建设活动策划
  • 上海网站建设费用多少bt种子bt天堂
  • 宝安网站建设迅雷磁力链bt磁力天堂
  • 不同程序建的网站风格网络防御中心
  • 小人发射爱心代码htmlseo优化的主要内容
  • 邯郸网站建设公司万能软文模板
  • 网站服务器 同步备份手机端怎么刷排名
  • 北京顺义建设委员会网站首页衡水网站优化推广
  • 做网站构建百度客服怎么联系
  • 2019年怎么做网站宁波网络推广seo软件
  • 网上做家教那个网站好seo项目经理
  • 网站推广团队东莞推广公司
  • 网站新闻标题标题怎样进行优化seo免费教程
  • 网站首页视频背景域名怎么查
  • 建设flash网站上海网站推广公司
  • 17一起做网店网站wap网站html5
  • 门户 网站开发周期厦门seo排名扣费
  • 做网站一般把宽度做多少外贸网站平台哪个好
  • 版纳网站建设国内seo排名
  • 网站上的vR场景贴图怎么做的广州seo工资
  • 网站名称与域名浙江网站建设营销
  • 企业网站推广计划品牌全案策划
  • 公司建设网站的案例分析南京seo网络优化公司
  • 做网站好的书友情链接购买
  • 政务网站建设工作总结百度推广培训班
  • 做网站设计挣钱吗网站外链是什么
  • cms做企业网站建站系统最近的重大新闻
  • 表格网站源码护肤品营销策划方案
  • 购物网站建设费用搜索大全引擎入口网站
  • 有什么建筑网站百度文库个人登录