当前位置: 首页 > news >正文

怎么做自己的个人网站网络营销策划方案800字

怎么做自己的个人网站,网络营销策划方案800字,123883网站,南昌建设网站公司☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 Pytorch与Keras介绍 Pytorch 模型定义 模型编译 模型训练 输入格式 完整代码 Keras 模型定义 模型编译 模型训练 输入格式 完整代…

  

☁️主页 Nowl

🔥专栏《机器学习实战》 《机器学习》

📑君子坐而论道,少年起而行之 

文章目录

Pytorch与Keras介绍

Pytorch

模型定义

模型编译

模型训练

输入格式

完整代码

Keras

模型定义

模型编译

模型训练

输入格式

完整代码

区别与使用场景

结语


Pytorch与Keras介绍

pytorch和keras都是一种深度学习框架,使我们能很便捷地搭建各种神经网络,但它们在使用上有一些区别,也各自有其特性,我们一起来看看吧

Pytorch

模型定义

我们以最简单的网络定义来学习pytorch的基本使用方法,我们接下来要定义一个神经网络,包括一个输入层,一个隐藏层,一个输出层,这些层都是线性的,给隐藏层添加一个激活函数Relu,给输出层添加一个Sigmoid函数

import torch
import torch.nn as nnclass SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc1 = nn.Linear(1, 32)self.relu = nn.ReLU()self.fc2 = nn.Linear(32, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):x = self.fc1(x)x = self.relu(x)x = self.fc2(x)x = self.Sigmoid(x)return x

模型编译

我们在之前的机器学习文章中反复提到过,模型的训练是怎么进行的呢,要有一个损失函数与优化方法,我们接下来看看在pytorch中怎么定义这些

import torch.optim as optim# 实例化模型对象
model = SimpleNet()
# 定义损失函数
criterion = nn.MSELoss()# 定义优化器
learning_rate = 0.01
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

我们上面创建的神经网络是一个类,所以我们实例化一个对象model,然后定义损失函数为mse,优化器为随机梯度下降并设置学习率

模型训练

# 创建随机输入数据和目标数据
input_data = torch.randn((100, 1))  # 100个样本,每个样本有1个特征
target_data = torch.randn((100, 1))  # 100个样本,每个样本有1个目标值# 训练模型
epochs = 100for epoch in range(epochs):# 前向传播output = model(input_data)# 计算损失loss = criterion(output, target_data)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

以上步骤是先创建了一些随机样本,作为模型的训练集,然后定义训练轮次为100次,然后前向传播数据集,计算损失,再优化,如此反复

输入格式

关于输入格式是很多人在实战中容易出现问题的,对于pytorch创建的神经网络,我们的输入内容是一个torch张量,怎么创建呢

data = torch.Tensor([[1], [2], [3]])

很简单对吧,上面这个例子创建了一个torch张量,有三组数据,每组数据有1个特征

我们可以把这个数据输入到训练好的模型中,得到输出结果,如果输出不是torch张量,代码就会报错

完整代码

import torch
import torch.nn as nn
import torch.optim as optim# 定义一个简单的神经网络模型
class SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc1 = nn.Linear(1, 32)self.relu = nn.ReLU()self.fc2 = nn.Linear(32, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):x = self.fc1(x)x = self.relu(x)x = self.fc2(x)x = self.sigmoid(x)return xmodel = SimpleNet()
criterion = nn.MSELoss()# 定义优化器
learning_rate = 0.01
optimizer = optim.SGD(model.parameters(), lr=learning_rate)# 创建随机输入数据和目标数据
input_data = torch.randn((100, 1))  # 100个样本,每个样本有1个特征
target_data = torch.randn((100, 1))  # 100个样本,每个样本有1个目标值# 训练模型
epochs = 100for epoch in range(epochs):# 前向传播output = model(input_data)# 计算损失loss = criterion(output, target_data)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()data = torch.Tensor([[1], [2], [3]])
prediction = model(data)print(prediction)

可以看到模型输出了三个预测值

注意,这个任务本身没有意义,因为我们的训练集是随机生成的,这里主要学习框架的使用方法

Keras

我们在这里把和上面相同的神经网络结构使用keras框架实现一遍

模型定义

from keras.models import Sequential
from keras.layers import Densemodel = Sequential([Dense(32, input_dim=1, activation='relu'),Dense(1, activation='sigmoid')
])

注意这里也是一层输入层,一层隐藏层,一层输出层,和pytorch一样,输入层是隐式的,我们的输入数据就是输入层,上述代码定义了一个隐藏层,输入维度是1,输出维度是32,还定义了一个输出层,输入维度是32,输出维度是1,和pytorch环节的模型结构是一样的 

模型编译

那么在Keras中模型又是怎么编译的呢

model.compile(loss='mse', optimizer='sgd')

非常简单,只需要这一行代码 ,设置损失函数为mse,优化器为随机梯度下降

模型训练

模型的训练也非常简单

# 训练模型
model.fit(input_data, target_data, epochs=100)

 因为我们已经编译好了损失函数和优化器,在fit里只需要输入数据,输出数据和训练轮次这些参数就可以训练了

输入格式

对于Keras模型的输入,我们要把它转化为numpy数组,不然会报错

data = np.array([[1], [2], [3]])

完整代码

from keras.models import Sequential
from keras.layers import Dense
import numpy as np# 定义模型
model = Sequential([Dense(32, input_dim=1, activation='relu'),Dense(1, activation='sigmoid')
])# 创建随机输入数据和目标数据
input_data = np.random.randn(100, 1)  # 100个样本,每个样本有10个特征
target_data = np.random.randn(100, 1)  # 100个样本,每个样本有5个目标值# 编译模型
model.compile(loss='mse', optimizer='sgd')
# 训练模型
model.fit(input_data, target_data, epochs=10)data = np.array([[1], [2], [3]])prediction = model(data)
print(prediction)

可以看到,同样的任务,Keras的代码量小很多

区别与使用场景

Keras代码量少,使用便捷,适用于快速实验和快速神经网络设计

而pytorch由于结构是由类定义的,可以更加灵活地组建神经网络层,这对于要求细节的任务更有利,同时,pytorch还采用动态计算图,使得模型的结构可以在运行时根据输入数据动态调整,但这个特点我还没有接触到,之后可能会详细讲解

结语

Keras和Pytorch都各有各的优点,请读者根据需求选择,同时有些深度学习教程偏向于使用某一种框架,最好都学习一点,以适应不同的场景

 

感谢阅读,觉得有用的话就订阅下本专栏吧 

http://www.ds6.com.cn/news/95546.html

相关文章:

  • 做羊毛毡的网站2024年度关键词
  • 做任务刷单的网站是真的吗山东关键词优化联系电话
  • 网站建设的作用有哪些seo费用
  • 河北seo推广公司公司网站seo外包
  • 网站设计用什么做搜狗引擎搜索
  • 网站开发过程前端后端百度指数有什么参考意义
  • android 旅游网站开发网络搜索关键词
  • 静态网站开发实训的目的快推广app下载
  • 自己的网站做弹出广告上海百度分公司电话
  • 重庆网站建设公司招聘今天刚刚发生的新闻
  • 怎么把自己做的网站放到网上必应站长平台
  • 找个人制作网页的网站石家庄最新消息今天
  • 免费域名做网站百度网站首页
  • 自己本地可以做网站服务器google adwords
  • 最好的网站开发工具太原seo优化
  • 靠谱的网络建站服务热线aso优化软件
  • 河北网站建设公司如何获取网站的seo
  • 龙岗沙湾社区网站建设中山谷歌推广
  • 研发地网站建设网址外链平台
  • 网站建设回龙观西安百度关键词优化
  • 庆阳市西峰区做网站seo优化师培训
  • 安卓移动网站开发详解怎么在百度上做广告
  • 网站增加关键词全网营销推广系统
  • 网站建网站建设如何优化关键词的方法
  • 做企业网站时需要注意哪些地方app运营方案策划
  • 杭州网站做的好公司嘉兴新站seo外包
  • 羞差视频免费首入口网页杭州谷歌seo公司
  • 网站不备案怎么办理广州网站建设推广专家
  • 做一人网站要多少钱中企动力做网站推广靠谱吗
  • 树莓派wordpress速度如何长沙seo智优营家