当前位置: 首页 > news >正文

纺织品做外贸一般在哪个网站上千峰培训可靠吗?

纺织品做外贸一般在哪个网站上,千峰培训可靠吗?,做宽带销售网站,企业网站模板下载软件CNN的原理 从 DNN 到 CNN (1)卷积层与汇聚 ⚫ 深度神经网络 DNN 中,相邻层的所有神经元之间都有连接,这叫全连接;卷积神经网络 CNN 中,新增了卷积层(Convolution)与汇聚&#xff08…

CNN的原理

从 DNN 到 CNN
(1)卷积层与汇聚
⚫ 深度神经网络 DNN 中,相邻层的所有神经元之间都有连接,这叫全连接;卷积神经网络 CNN 中,新增了卷积层(Convolution)与汇聚(Pooling)。
⚫ DNN 的全连接层对应 CNN 的卷积层,汇聚是与激活函数类似的附件;单个卷积层的结构是:卷积层-激活函数-(汇聚),其中汇聚可省略。
(2)CNN:专攻多维数据
在深度神经网络 DNN 课程的最后一章,使用 DNN 进行了手写数字的识别。但是,图像至少就有二维,向全连接层输入时,需要多维数据拉平为 1 维数据,这样一来,图像的形状就被忽视了,很多特征是隐藏在空间属性里的,而卷积层可以保持输入数据的维数不变,当输入数据是二维图像时,卷积层会以多维数据的形式接收输入数据,并同样以多维数据的形式输出至下一层

导包

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt

制作数据集

# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)

训练网络

class CNN(nn.Module):def __init__(self):super(CNN,self).__init__()self.net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),nn.Flatten(),nn.Linear(120, 84), nn.Tanh(),nn.Linear(84, 10)
)def forward(self, x):y = self.net(x)return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(model.parameters(),lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):for (x, y) in train_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)loss = loss_fn(Pred, y) # 计算损失函数losses.append(loss.item()) # 记录损失函数的变化optimizer.zero_grad() # 清理上一轮滞留的梯度loss.backward() # 一次反向传播optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()

测试网络

# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能for (x, y) in test_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum( (predicted == y) )total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')

使用网络

# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

完整代码

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)class CNN(nn.Module):def __init__(self):super(CNN,self).__init__()self.net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),nn.Flatten(),nn.Linear(120, 84), nn.Tanh(),nn.Linear(84, 10)
)def forward(self, x):y = self.net(x)return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(model.parameters(),lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):for (x, y) in train_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)loss = loss_fn(Pred, y) # 计算损失函数losses.append(loss.item()) # 记录损失函数的变化optimizer.zero_grad() # 清理上一轮滞留的梯度loss.backward() # 一次反向传播optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能for (x, y) in test_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum( (predicted == y) )total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

运行截图

http://www.ds6.com.cn/news/99669.html

相关文章:

  • 网站做城市地图怎么做一个小程序
  • wordpress 4.8.6下载宁波seo排名优化价格
  • 移动互联网站建设seo分析工具有哪些
  • asp.net企业网站排名优化软件
  • 可以做卷子的网站大数据精准客户
  • 昆明网站建设 网络服务百度百科优化
  • 深圳网站设计首选刻公司网站建设步骤
  • 如何做网络推广网站seo推广 课程
  • 做论坛网站怎么赚钱怎样进行seo优化
  • 怎样给公司做一个网站下载百度安装到桌面
  • 专门做免费东西试吃的网站seo费用价格
  • 网站配色的原理和方法友情链接又称
  • 做最简单的网站深圳seo排名优化
  • 网站建设毕业论文5000字seo站点是什么意思
  • wordpress影视站提高网站收录的方法
  • 网站开发的三个流程网络推广公司加盟
  • 网站出问题seo网站排名查询
  • 网站雪花代码soso搜索引擎
  • 学asp.net 做网站 书籍潍坊网站建设平台
  • 余姚网站推广链接推广平台
  • 网站360优化公众号推广渠道
  • 定制小程序网站开发公司上海整站seo
  • 有建设网站的软件吗磁力吧ciliba
  • 运营企业网站知乎小说推广对接平台
  • 新手学做网站12天婴seozhun
  • 武汉网站建设公司哪家专业郑州网站建设推广优化
  • 安卓app制作入门教程网站seo哪里做的好
  • 怎么建设商业网站搜索引擎优化员简历
  • 什么网站可以买世界杯独立站seo实操
  • yahoo怎么提交网站淘宝付费推广有几种方式