当前位置: 首页 > news >正文

友汇网网站建设my63777免费域名查询

友汇网网站建设,my63777免费域名查询,web网页设计期末作业,百度推广账号登录torch. detach()拼接函数torch.stack()torch.nn.DataParallel()np.clip()torch.linspace()PyTorch中tensor.repeat()pytorch索引查找 index_select detach() detach是截断反向传播的梯度流 将某个node变成不需要梯度的Varibale。因此当反向传播经过这个node时,梯度…

torch.

  • detach()
  • 拼接函数torch.stack()
  • torch.nn.DataParallel()
  • np.clip()
  • torch.linspace()
  • PyTorch中tensor.repeat()
  • pytorch索引查找 index_select

detach()

detach是截断反向传播的梯度流
将某个node变成不需要梯度的Varibale。因此当反向传播经过这个node时,梯度就不会从这个node往前面传播。

拼接函数torch.stack()

拼接:将多个维度参数相同的张量连接成一个张量

a=torch.tensor([[1,2,3],[4,5,6]])
b=torch.tensor([[10,20,30],[40,50,60]])
c=torch.tensor([[100,200,300],[400,500,600]])
print(torch.stack([a,b,c],dim=0))
print(torch.stack([a,b,c],dim=1))
print(torch.stack([a,b,c],dim=2))
print(torch.stack([a,b,c],dim=0).size())
print(torch.stack([a,b,c],dim=1).size())
print(torch.stack([a,b,c],dim=2).size())
#输出结果为:
tensor([[[  1,   2,   3],[  4,   5,   6]],[[ 10,  20,  30],[ 40,  50,  60]],[[100, 200, 300],[400, 500, 600]]])
tensor([[[  1,   2,   3],[ 10,  20,  30],[100, 200, 300]],[[  4,   5,   6],[ 40,  50,  60],[400, 500, 600]]])
tensor([[[  1,  10, 100],[  2,  20, 200],[  3,  30, 300]],[[  4,  40, 400],[  5,  50, 500],[  6,  60, 600]]])
torch.Size([3, 2, 3])
torch.Size([2, 3, 3])
torch.Size([2, 3, 3])

torch.nn.DataParallel()

torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)
module即表示你定义的模型,device_ids表示你训练的device,output_device这个参数表示输出结果的device,而这最后一个参数output_device一般情况下是省略不写的,那么默认就是在device_ids[0],也就是第一块卡上。

np.clip()

a = np.arange(10)
np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) # a被限制在1-8之间
a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) # 没改变a的原值np.clip(a, 3, 6, out=a) # 修剪后的数组存入到a中
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])

torch.linspace()

函数的作用是,返回一个一维的tensor,这个张量包含了从start到end,分成steps个线段得到的向量。

torch.linspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) 
→ Tensor

例如

import torch
print(torch.linspace(3,10,5))
#tensor([ 3.0000,  4.7500,  6.5000,  8.2500, 10.0000])type=torch.float
print(torch.linspace(-10,10,steps=6,dtype=type))
#tensor([-10.,  -6.,  -2.,   2.,   6.,  10.])

PyTorch中tensor.repeat()

当参数只有两个时,第一个参数表示的是行复制的次数,第二个参数表示列复制的次数;
当参数有三个时,第一个参数表示的是通道复制的次数,第二个参数表示的是行复制的次数,第三个参数表示列复制的次数。
(1). 对于已经存在的维度复制

import torcha = torch.tensor([[1], [2], [3]])  # 3 * 1
b = a.repeat(3, 2)
print('a\n:', a)
print('shape of a', a.size())  # 原始shape = (3,1)
print('b:\n', b)
print('shape of b', b.size())  # 新的shape = (3*3,1*2),新增加的数据通过复制得到'''   运行结果   '''
a:
tensor([[1],[2],[3]])
shape of a torch.Size([3, 1])  注: 原始shape =31)
b:tensor([[1, 1],[2, 2],[3, 3],[1, 1],[2, 2],[3, 3],[1, 1],[2, 2],[3, 3]])
shape of b torch.Size([9, 2])  新的shape =3*31*2

(2). 对于原始不存在的维度数量拓展

import torch
a = torch.tensor([[1, 2], [3, 4], [5, 6]])  # 3 * 2
b = a.repeat(3, 2, 1)   # 在原始tensor的0维前拓展一个维度,并把原始tensor的第1维扩张2倍,都是通过复制来完成的
print('a:\n', a)
print('shape of a', a.size())  # 原始维度为 (3,2)
print('b:\n', b)
print('shape of b', b.size())  # 新的维度为 (3,2*2,2*1)=(3,4,2)'''   运行结果   '''
a:tensor([[1, 2],[3, 4],[5, 6]])
shape of a torch.Size([3, 2])   注:原始维度为 (32)
b:tensor([[[1, 2],[3, 4],[5, 6],[1, 2],[3, 4],[5, 6]],[[1, 2],[3, 4],[5, 6],[1, 2],[3, 4],[5, 6]],[[1, 2],[3, 4],[5, 6],[1, 2],[3, 4],[5, 6]]])
shape of b torch.Size([3, 6, 2])   新的维度为 (32*22*1=342

pytorch索引查找 index_select

anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))

先定义了一个tensor,这里用到了linspace和view方法。
第一个参数是索引的对象,第二个参数0表示按行索引,1表示按列进行索引,第三个参数是一个tensor,就是索引的序号,比如b里面tensor[0, 2]表示第0行和第2行,c里面tensor[1, 3]表示第1列和第3列

a = torch.linspace(1, 12, steps=12).view(3, 4)
print(a)
b = torch.index_select(a, 0, torch.tensor([0, 2]))
print(b)
print(a.index_select(0, torch.tensor([0, 2])))
c = torch.index_select(a, 1, torch.tensor([1, 3]))
print(c)-----输出结果-----
tensor([[ 1.,  2.,  3.,  4.],[ 5.,  6.,  7.,  8.],[ 9., 10., 11., 12.]])
tensor([[ 1.,  2.,  3.,  4.],[ 9., 10., 11., 12.]])
tensor([[ 1.,  2.,  3.,  4.],[ 9., 10., 11., 12.]])
tensor([[ 2.,  4.],[ 6.,  8.],[10., 12.]])
http://www.ds6.com.cn/news/38068.html

相关文章:

  • 做企业网站 排名百度网址大全免费下载
  • 公司网站建设与维护方案沧州网站运营公司
  • 广州天美展览公司网站网络营销的特点是什么?
  • js 调用本地wordpress北京优化seo
  • 英文网站建设费用百度知道入口
  • 自己做电影网站怎么赚钱惠州网站建设方案推广
  • 网站建设与管理基础及实训seo tdk
  • 8网站建设做网站网站统计哪个好用
  • 网站后台做链接cps广告联盟平台
  • 网站服务器租用哪家好软件推广是什么工作
  • 2023网页游戏排行榜关键词优化分析工具
  • 移动端网站日历怎么做深圳seo优化排名推广
  • 政府门户网站建设的意义是seo先上排名后收费
  • 做旅游网站课程设计报告站长工具平台
  • 网站怎么做百度百科公司培训
  • 网站开发有几种语言百度百度一下百度
  • 手机app制作网站模板站长工具
  • 深圳小程序开发公司排名网站优化入门
  • 重庆金融公司网站建设做一个公司网站要多少钱
  • 福州网站建设公司网站关键词排名外包
  • 有源代码怎么制作网站室内设计培训班学费一般多少
  • 专业做旅游网站seo的方式包括
  • 网站友情链接很重要吗网站推广和精准seo
  • 腾讯企业邮箱官网入口seo公司推广
  • 网站开发免责合同影响seo排名的因素有哪些
  • 卖服务器建网站宁波网站推广公司有哪些
  • 一个ip地址上可以做几个网站青岛seo服务公司
  • 宏大建设集团网站淘宝热搜关键词排行榜
  • 做外贸 用国内空间做网站北京seo全网营销
  • 网站关健词排名在百度上怎么注册网站