当前位置: 首页 > news >正文

徐州住房与建设局网站网址注册

徐州住房与建设局网站,网址注册,国际免费b2b大全,自助网站建设费用Multinomial Naive Bayes:用于多项式模型的Naive Bayes分类器 一、算法思路 多项式Naive Bayes分类器适用于离散特征分类(如文本分类中的字数) 多叉分布通常需要整数特征计数 不过,在实际应用中,分数计数&#xff08…

Multinomial Naive Bayes:用于多项式模型的Naive Bayes分类器

一、算法思路

多项式Naive Bayes分类器适用于离散特征分类(如文本分类中的字数)
多叉分布通常需要整数特征计数
不过,在实际应用中,分数计数(如 tf-idf)也可以起作用

二、官网API

官网API
导包:from sklearn.naive_bayes import MultinomialNB

class sklearn.naive_bayes.MultinomialNB(*, alpha=1.0, force_alpha='warn', fit_prior=True, class_prior=None)

①平滑参数alpha

加法(拉普拉斯/利德斯通)平滑参数(设置 alpha=0 和 force_alpha=True 表示不平滑)
浮点数,默认为1.0
也可以传入array形式,array为各个特征值

具体官网详情如下:
在这里插入图片描述

使用方法

MultinomialNB(alpha=1.2)
或者
beyond = ['cat','dog']
multinomial = MultinomialNB(alpha=beyond)

②force_alpha

如果为False,且alpha小于1e-10,则会将alpha设置为1e-10,默认值
如果为True,alpha将保持不变
如果alpha太接近0,可能会导致数字错误

具体官网详情如下:
在这里插入图片描述

使用方法

MultinomialNB(force_alpha=True)

③fit_prior

是否学习类别先验概率。如果为False,将使用统一先验;默认值为True

具体官网详情如下:
在这里插入图片描述

使用方法

MultinomialNB(fit_prior=False)

④类别先验概率class_prior

class_prior类别的先验概率;如果指定,则不会根据数据调整先验概率;默认值为None

具体官网详情如下:
在这里插入图片描述

使用方法

beyond = ['cat','dog']
multinomial = MultinomialNB(class_prior=beyond)

⑤最终构建模型

MultinomialNB(alpha=1.2,force_alpha=True,fit_prior=False)

三、代码实现

①导包

这里需要评估、训练、保存和加载模型,以下是一些必要的包,若导入过程报错,pip安装即可

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import joblib
%matplotlib inline
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

②加载数据集

数据集可以自己简单整个,csv格式即可,我这里使用的是6个自变量X和1个因变量Y
在这里插入图片描述

fiber = pd.read_csv("./fiber.csv")
fiber.head(5) #展示下头5条数据信息

在这里插入图片描述

③划分数据集

前六列是自变量X,最后一列是因变量Y

常用的划分数据集函数官网API:train_test_split
在这里插入图片描述
test_size:测试集数据所占比例
train_size:训练集数据所占比例
random_state:随机种子
shuffle:是否将数据进行打乱
因为我这里的数据集共48个,训练集0.75,测试集0.25,即训练集36个,测试集12个

X = fiber.drop(['Grade'], axis=1)
Y = fiber['Grade']X_train, X_test, y_train, y_test = train_test_split(X,Y,train_size=0.75,test_size=0.25,random_state=42,shuffle=True)print(X_train.shape) #(36,6)
print(y_train.shape) #(36,)
print(X_test.shape) #(12,6)
print(y_test.shape) #(12,)

④构建MultinomialNB模型

参数可以自己去尝试设置调整

multinomial = MultinomialNB(alpha=1.2,force_alpha=True,fit_prior=False)

⑤模型训练

就这么简单,一个fit函数就可以实现模型训练

multinomial.fit(X_train,y_train)

⑥模型评估

把测试集扔进去,得到预测的测试结果

y_pred = multinomial.predict(X_test)

看看预测结果和实际测试集结果是否一致,一致为1否则为0,取个平均值就是准确率

accuracy = np.mean(y_pred==y_test)
print(accuracy)

也可以通过score得分进行评估,计算的结果和思路都是一样的,都是看所有的数据集中模型猜对的概率,只不过这个score函数已经封装好了,当然传入的参数也不一样,需要导入accuracy_score才行,from sklearn.metrics import accuracy_score

score = multinomial.score(X_test,y_test)#得分
print(score)

⑦模型测试

拿到一条数据,使用训练好的模型进行评估
这里是六个自变量,我这里随机整个test = np.array([[16,18312.5,6614.5,2842.31,25.23,1147430.19]])
扔到模型里面得到预测结果,prediction = multinomial.predict(test)
看下预测结果是多少,是否和正确结果相同,print(prediction)

test = np.array([[16,18312.5,6614.5,2842.31,25.23,1147430.19]])
prediction = multinomial.predict(test)
print(prediction) #[2]

⑧保存模型

multinomial是模型名称,需要对应一致
后面的参数是保存模型的路径

joblib.dump(multinomial, './multinomial.model')#保存模型

⑨加载和使用模型

multinomial_yy = joblib.load('./multinomial.model')test = np.array([[11,99498,5369,9045.27,28.47,3827588.56]])#随便找的一条数据
prediction = multinomial_yy.predict(test)#带入数据,预测一下
print(prediction) #[4]

完整代码

模型训练和评估,不包含⑧⑨。

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import joblib
%matplotlib inline
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix, classification_report, accuracy_scorefiber = pd.read_csv("./fiber.csv")
fiber.head(5) #展示下头5条数据信息X = fiber.drop(['Grade'], axis=1)
Y = fiber['Grade']X_train, X_test, y_train, y_test = train_test_split(X,Y,train_size=0.75,test_size=0.25,random_state=42,shuffle=True)print(X_train.shape) #(36,6)
print(y_train.shape) #(36,)
print(X_test.shape) #(12,6)
print(y_test.shape) #(12,)multinomial= MultinomialNB(alpha=1.2,force_alpha=True,fit_prior=False)
multinomial.fit(X_train,y_train)y_pred = multinomial.predict(X_test)
accuracy = np.mean(y_pred==y_test)
print(accuracy)
score = multinomial.score(X_test,y_test)#得分
print(score)test = np.array([[16,18312.5,6614.5,2842.31,25.23,1147430.19]])
prediction = multinomial.predict(test)
print(prediction) #[2]
http://www.ds6.com.cn/news/64371.html

相关文章:

  • 网站详情怎么做的如何优化培训体系
  • 武汉网站优化seo全国疫情又严重了
  • 营销型网站建设模板下载网站页面优化包括
  • 专业做网站登录公司要做seo
  • qq小程序入口如何优化网络环境
  • 肇庆住房和城乡建设局网站关键路径
  • 做商城微信网站电子商务软文写作
  • 上海闵行区天气预报搜索引擎优化方案
  • 做网站都用到哪些软件阿里云建网站
  • 长沙建立网站电商运营平台
  • 用web做简单的电商网站简单的seo
  • 利用php做直播网站西安网站建设排名
  • 做同城信息类网站如何赚钱关键词优化简易
  • 恭城网站建设网络营销策划方案案例
  • 李沧网站建设百度指数搜索
  • app模板下载网站网络推广计划书范文
  • 电子商务网站建设影响因素正规微商免费推广软件
  • 网站前端页面设计360建站系统
  • 手机做公司网站汕头网站建设平台
  • 动漫制作与设计专业真实的优化排名
  • 赣州客家新闻网苏州百度关键词优化
  • 网站布局分类成品网站源码
  • 网站是不是要用代码做佛山网站建设排名
  • 新疆示范工程建设服务平台网站免费推广引流平台有哪些
  • 做网站都需要什么软件友情链接是外链吗
  • 网站怎么经营长岭网站优化公司
  • 电子商务网站建设与实例大数据智能营销
  • 甘肃省人民政府官网首页论述搜索引擎优化的具体措施
  • 做销售网站要多少钱武汉网站推广公司排名
  • 注册网站的公司名字凤凰军事新闻最新消息