当前位置: 首页 > news >正文

国内哪个网站做水产比较大宁波seo排名优化培训

国内哪个网站做水产比较大,宁波seo排名优化培训,建设网站询价对比表模板,wordpress获取二级分类目录列表相关性分析是一种用于衡量两个或多个变量之间关系密切程度的方法。相关性分析通常用于探索变量之间的关系,以及预测一个变量如何随着另一个变量的变化而变化。在数学建模中,这是常用的数据分析手段。   相关性分析的结果通常用相关系数来表示&#xff…

  相关性分析是一种用于衡量两个或多个变量之间关系密切程度的方法。相关性分析通常用于探索变量之间的关系,以及预测一个变量如何随着另一个变量的变化而变化。在数学建模中,这是常用的数据分析手段。
  相关性分析的结果通常用相关系数来表示,相关系数的取值范围为-1到1,其中1表示完全正相关,-1表示完全负相关,0表示没有相关性。
我们常用的相关系数包括:

  1. Pearson相关系数:用于衡量两个连续变量之间的线性关系。取值范围在 -1 到 1 之间,其中 -1 表示完全负相关,1 表示完全正相关,0 表示无线性关系。
  2. Spearman等级相关系数:用于衡量两个变量之间的单调关系,不要求变量呈线性关系。对于等级或顺序数据更为适用。

  在使用相关系数时,我们需要注意:样本越大,相关系数估计越稳定;有些相关系数对数据分布的假设比较敏感,确保你的数据满足相关方法的前提条件;相关性不代表因果关系,即使两个变量相关,也不能得出一个是因为另一个的结论。那么,对于这两种相关系数,我们如何选择呢?

Pearson相关系数

  Pearson相关系数是一种用于度量两个连续变量之间线性关系强度和方向的统计量。它通常用字母 τ \tau τ 表示,取值范围在 -1 到 1 之间。
  计算皮尔逊相关性时,要了解它要符合5个假设:连续变量;两个变量之间存在一定线性关系;两个变量应该大致符合正态分布;数据集中每个观测数据包括成对数据;数据集中不应包括极端异常值数据。
公式为: τ = ∑ ( x i − x ‾ ) ( y i − y ‾ ) ∑ ( x i − x ‾ ) 2 ⋅ ∑ ( y i − y ‾ ) 2 \tau=\frac {\sum(x_i-\overline x)(y_i-\overline y)}{\sqrt{\sum(x_i-\overline x)^2\cdot\sum(y_i-\overline y)^2}} τ=(xix)2(yiy)2 (xix)(yiy)  其中, x i x_i xi y i y_i yi分别是两个变量的观察值, x ‾ \overline x x y ‾ \overline y y分别是两个变量的均值。
  Pearson相关系数假设两个变量之间的关系是线性的,因此它可能不适用于非线性关系的情况。在数据中存在异常值或数据不符合正态分布的情况下,Pearson相关系数的解释力也可能受到影响。在这些情况下,Spearman等级相关系数可能更为适用,因为它们对于非线性关系和异常值更具有鲁棒性。

Spearman等级相关系数

  Spearman等级相关系数(Spearman’s rank correlation coefficient),通常用符号 ρ \rho ρ表示,是一种用于度量两个变量之间的单调关系(不一定是线性关系)的统计量。Spearman相关系数基于变量的等级或秩次而不是具体的数值。这使得它对于数据的分布形状和是否满足正态分布的要求都相对较为鲁棒。
  计算Spearman等级相关系数的步骤:对于每个变量,将其观察值按照大小进行排名,即从最小到最大依次排列,并用秩次表示;对于每一对观察值,计算其等级差(即秩次差);计算等级差的平方和;使用公式将等级差的平方和转换为Spearman相关系数。
  设 D i D_i Di为变量X和Y对应的秩次差,n为样本大小,Spearman相关系数的计算公式为: ρ = 1 − 6 ∑ D i 2 n ( n 2 − 1 ) \rho=1-\frac{6\sum D_i^2}{n(n^2-1)} ρ=1n(n21)6Di2  Spearman相关系数的取值范围在 -1 到 1 之间:当 ρ=1 时,表示存在完全的正单调关系,即一个变量的增加伴随着另一个变量的增加;当 ρ=−1 时,表示存在完全的负单调关系,即一个变量的增加伴随着另一个变量的减少;当 ρ=0 时,表示两个变量之间没有单调关系。
  Spearman相关系数对于非线性关系和异常值的敏感性相对较低,因此在数据不满足正态分布、存在异常值或者存在非线性关系的情况。

python代码实现


import pandas as pd# 示例数据
df = pd.DataFrame({'data1': [1, 2, 3, 4, 5], 'data2': [5, 4, 3, 2, 1]})# 计算 Pearson 相关系数
pearson_corr = df['data1'].corr(df['data2'])# 计算 Spearman 等级相关系数
spearman_corr = df['data1'].corr(df['data2'], method='spearman')print("Pearson 相关系数:", pearson_corr)
print("Spearman 等级相关系数:", spearman_corr)# Pearson 相关系数: -0.9999999999999999
# Spearman 等级相关系数: -0.9999999999999999

相关系数热力图:
在这里插入图片描述

http://www.ds6.com.cn/news/67502.html

相关文章:

  • 创建一个网站需要怎么做百度推广和百度竞价有什么区别
  • 视频播放网站开发aso优化什么意思
  • 网站建设重要新百度seo提高排名费用
  • 大连住房和建设局网站营销培训课程
  • 广州网站建设加q479185700seo和sem是什么
  • 工厂办公室装修设计小程序seo推广技巧
  • 36氪网站用什么程序做的百度地图在线使用
  • 做网站数据库多少钱南昌seo推广
  • 整站优化网站报价广告推广计划
  • thinkphp 微网站开发品牌营销案例分析
  • 河北企业网站建设技术百度快照怎么做
  • 金融网站制作全球网站访问量排名
  • 网站关键词策略爱站权重查询
  • 网站建设用图片百度培训
  • 高端网站建设专业电商培训班
  • 站群网站程序百度网盘首页
  • qq上网站做我女朋友站长之家ping检测
  • 企业品牌网站建设价格黄冈网站推广策略
  • 软件公司网站建设淘宝指数
  • 不记得在哪里做的网站备案游戏推广是干什么的
  • 时尚网站欣赏网络关键词优化方法
  • 太原网站seo交换链接案例
  • 建设厅国网查询网站优化网站排名技巧
  • 大连在哪儿百度seo公司哪家最好
  • 云南省网站备案网络口碑营销名词解释
  • 贵州建设职业学院官方网站优化大师手机版
  • 高端网站设计合肥网站建设百度首页纯净版怎么设置
  • 在县城做商城网站seo优化查询
  • 网站名称意义石家庄网络推广优化
  • 沈阳商城网站建设百度帐号登录入口